Shivdutta's picture
Update app.py
04e4d09 verified
raw
history blame
7.7 kB
import gradio as gr
import peft
from peft import LoraConfig
from transformers import AutoTokenizer,BitsAndBytesConfig, AutoModelForCausalLM, CLIPVisionModel, AutoProcessor
import torch
from peft import PeftModel
import torch.nn as nn
import whisperx
import os
clip_model_name = "openai/clip-vit-base-patch32"
phi_model_name = "microsoft/phi-2"
tokenizer = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(clip_model_name)
tokenizer.pad_token = tokenizer.eos_token
IMAGE_TOKEN_ID = 23893 # token for word comment
device = "cuda" if torch.cuda.is_available() else "cpu"
clip_embed = 768
phi_embed = 2560
compute_type = "float32"
audio_batch_size = 16
class SimpleResBlock(nn.Module):
def __init__(self, phi_embed):
super().__init__()
self.pre_norm = nn.LayerNorm(phi_embed)
self.proj = nn.Sequential(
nn.Linear(phi_embed, phi_embed),
nn.GELU(),
nn.Linear(phi_embed, phi_embed)
)
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
# models
clip_model = CLIPVisionModel.from_pretrained(clip_model_name).to(device)
projection = torch.nn.Linear(clip_embed, phi_embed).to(device)
resblock = SimpleResBlock(phi_embed).to(device)
phi_model = AutoModelForCausalLM.from_pretrained(phi_model_name,trust_remote_code=True).to(device)
# Assuming you have defined 'device' and 'compute_type' elsewhere
audio_model = whisperx.load_model("tiny", device, compute_type=compute_type, asr_options={'max_new_tokens': 2048, 'clip_timestamps': True, 'hallucination_silence_threshold': 0.25})
# load weights
model_to_merge = PeftModel.from_pretrained(phi_model,os.path.join(os.getcwd(), 'model_chkpt/lora_adaptor'))
merged_model = model_to_merge.merge_and_unload()
projection.load_state_dict(torch.load(os.path.join(os.getcwd(),'model_chkpt/finetunned_projection.pth'),map_location=torch.device(device)))
resblock.load_state_dict(torch.load(os.path.join(os.getcwd(),'model_chkpt/finetuned_resblock.pth'),map_location=torch.device(device)))
def model_generate_ans(img=None,img_audio=None,val_q=None):
max_generate_length = 100
val_combined_embeds = []
with torch.no_grad():
# image
if img is not None:
image_processed = processor(images=img, return_tensors="pt").to(device)
clip_val_outputs = clip_model(**image_processed).last_hidden_state[:,1:,:]
val_image_embeds = projection(clip_val_outputs)
val_image_embeds = resblock(val_image_embeds).to(torch.float16)
img_token_tensor = torch.tensor(IMAGE_TOKEN_ID).to(device)
img_token_embeds = merged_model.model.embed_tokens(img_token_tensor).unsqueeze(0).unsqueeze(0)
val_combined_embeds.append(val_image_embeds)
val_combined_embeds.append(img_token_embeds)
# audio
if img_audio is not None:
audio_result = audio_model.transcribe(img_audio)
audio_text = ''
for seg in audio_result['segments']:
audio_text += seg['text']
audio_text = audio_text.strip()
audio_tokens = tokenizer(audio_text, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
audio_embeds = merged_model.model.embed_tokens(audio_tokens).unsqueeze(0)
val_combined_embeds.append(audio_embeds)
# text question
if len(val_q) != 0:
val_q_tokenised = tokenizer(val_q, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
val_q_embeds = merged_model.model.embed_tokens(val_q_tokenised).unsqueeze(0)
val_combined_embeds.append(val_q_embeds)
val_combined_embeds = torch.cat(val_combined_embeds,dim=1)
#val_combined_embeds = torch.cat([val_image_embeds, img_token_embeds, val_q_embeds], dim=1) # 4, 69, 2560
predicted_caption = torch.full((1,max_generate_length),50256).to(device)
for g in range(max_generate_length):
phi_output_logits = merged_model(inputs_embeds=val_combined_embeds)['logits'] # 4, 69, 51200
predicted_word_token_logits = phi_output_logits[:, -1, :].unsqueeze(1) # 4,1,51200
predicted_word_token = torch.argmax(predicted_word_token_logits, dim = -1) # 4,1
predicted_caption[:,g] = predicted_word_token.view(1,-1)
next_token_embeds = phi_model.model.embed_tokens(predicted_word_token) # 4,1,2560
val_combined_embeds = torch.cat([val_combined_embeds, next_token_embeds], dim=1)
predicted_captions_decoded = tokenizer.batch_decode(predicted_caption,ignore_index = 50256)[0]
return predicted_captions_decoded
with gr.Blocks() as demo:
# Add custom CSS stylesheet within Markdown
gr.Markdown(
"""
<style>
/* General Layout */
body {
font-family: 'Arial', sans-serif;
background-color: #f4f6f9; /* Light pastel background */
margin: 0;
padding: 0;
}
/* Header */
h1, h2, h3 {
text-align: center;
color: #3a3a3a;
font-weight: bold;
}
gr-Markdown h1 {
font-size: 28px;
color: #a3d5d3; /* Soft pastel teal for the header */
}
/* Container and Columns */
.gr-row {
display: flex;
justify-content: center;
margin: 20px 0;
}
.gr-column {
flex: 1;
margin: 0 10px;
padding: 10px;
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.05);
background-color: #f8f0fa; /* Pastel pink background for columns */
border-radius: 8px;
}
/* Input Components */
.gr-Image, .gr-Audio, .gr-Text {
width: 100%;
margin-bottom: 15px;
background-color: #fff5e1; /* Soft pastel yellow for inputs */
border: 1px solid #e3e3e3;
border-radius: 8px;
}
.gr-Image label, .gr-Audio label, .gr-Text label {
font-size: 16px;
font-weight: bold;
color: #8b8b8b;
}
/* Submit Button */
.gr-Button {
width: 100%;
background-color: #b2c7e1; /* Pastel blue button */
color: white;
padding: 10px;
font-size: 16px;
border: none;
border-radius: 5px;
cursor: pointer;
transition: background-color 0.3s ease;
}
.gr-Button:hover {
background-color: #9db6d3; /* Darker pastel blue on hover */
}
/* Text Output */
.gr-Text {
font-size: 16px;
color: #333;
min-height: 100px;
padding: 10px;
border: 1px solid #ddd;
border-radius: 5px;
background-color: #edf5e1; /* Light pastel green for the output text box */
}
/* Responsive Design */
@media (max-width: 768px) {
.gr-row {
flex-direction: column;
}
.gr-column {
margin: 10px 0;
}
}
</style>
# Engage with MultiModal GPT!
A seamless AI experience combining CLIP and Phi-2 models.
"""
)
# app GUI
with gr.Row():
with gr.Column():
img_input = gr.Image(label='Image',type="pil")
img_audio = gr.Audio(label="Audio Query", sources=['microphone', 'upload'], type='filepath')
img_question = gr.Text(label ='Text Query')
with gr.Column():
img_answer = gr.Text(label ='Answer')
section_btn = gr.Button("Submit")
section_btn.click(model_generate_ans, inputs=[img_input,img_audio,img_question], outputs=[img_answer])
demo.launch()