Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,118 +1,118 @@
|
|
1 |
import gradio as gr
|
2 |
import peft
|
3 |
from peft import LoraConfig
|
4 |
-
from transformers import AutoTokenizer,
|
5 |
import torch
|
6 |
from peft import PeftModel
|
7 |
import torch.nn as nn
|
8 |
import whisperx
|
9 |
import os
|
10 |
|
11 |
-
|
12 |
clip_model_name = "openai/clip-vit-base-patch32"
|
13 |
phi_model_name = "microsoft/phi-2"
|
14 |
tokenizer = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=True)
|
15 |
processor = AutoProcessor.from_pretrained(clip_model_name)
|
16 |
tokenizer.pad_token = tokenizer.eos_token
|
17 |
-
IMAGE_TOKEN_ID = 23893
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
clip_embed = 768
|
20 |
phi_embed = 2560
|
21 |
-
compute_type = "float32"
|
22 |
-
audio_batch_size = 16
|
23 |
-
|
24 |
-
class SimpleResBlock(nn.Module):
|
25 |
-
def __init__(self, phi_embed):
|
26 |
-
super().__init__()
|
27 |
-
self.pre_norm = nn.LayerNorm(phi_embed)
|
28 |
-
self.proj = nn.Sequential(
|
29 |
-
nn.Linear(phi_embed, phi_embed),
|
30 |
nn.GELU(),
|
31 |
nn.Linear(phi_embed, phi_embed)
|
32 |
)
|
33 |
-
|
34 |
def forward(self, x):
|
35 |
x = self.pre_norm(x)
|
36 |
return x + self.proj(x)
|
37 |
-
|
38 |
-
#
|
39 |
clip_model = CLIPVisionModel.from_pretrained(clip_model_name).to(device)
|
40 |
projection = torch.nn.Linear(clip_embed, phi_embed).to(device)
|
41 |
resblock = SimpleResBlock(phi_embed).to(device)
|
42 |
-
phi_model = AutoModelForCausalLM.from_pretrained(phi_model_name,
|
|
|
43 |
audio_model = whisperx.load_model("tiny", device, compute_type=compute_type, asr_options={'max_new_tokens': 2048, 'clip_timestamps': True, 'hallucination_silence_threshold': 0.25})
|
44 |
|
45 |
-
#
|
46 |
-
model_to_merge = PeftModel.from_pretrained(phi_model,
|
47 |
-
merged_model
|
48 |
-
projection.load_state_dict(torch.load(os.path.join(os.getcwd(),
|
49 |
-
resblock.load_state_dict(torch.load(os.path.join(os.getcwd(),
|
|
|
|
|
50 |
|
51 |
-
|
52 |
val_combined_embeds = []
|
53 |
|
54 |
with torch.no_grad():
|
55 |
-
|
|
|
56 |
if img is not None:
|
57 |
-
image_processed
|
58 |
-
clip_val_outputs = clip_model(**image_processed).last_hidden_state[:,
|
59 |
val_image_embeds = projection(clip_val_outputs)
|
60 |
val_image_embeds = resblock(val_image_embeds).to(torch.float16)
|
61 |
|
62 |
-
img_token_tensor = torch.tensor(IMAGE_TOKEN_ID).to(device)
|
63 |
-
img_token_embeds = merged_model.model.embed_tokens(img_token_tensor).unsqueeze(0).unsqueeze(0)
|
64 |
-
|
65 |
val_combined_embeds.append(val_image_embeds)
|
66 |
val_combined_embeds.append(img_token_embeds)
|
67 |
|
68 |
-
#
|
69 |
if img_audio is not None:
|
70 |
audio_result = audio_model.transcribe(img_audio)
|
71 |
-
audio_text = '
|
|
|
|
|
|
|
72 |
audio_tokens = tokenizer(audio_text, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
|
73 |
-
audio_embeds
|
74 |
val_combined_embeds.append(audio_embeds)
|
75 |
-
|
76 |
-
#
|
77 |
-
if val_q:
|
78 |
-
|
79 |
-
val_q_embeds
|
80 |
val_combined_embeds.append(val_q_embeds)
|
81 |
|
82 |
-
val_combined_embeds = torch.cat(val_combined_embeds,
|
83 |
-
|
|
|
|
|
84 |
|
85 |
-
for g in range(
|
86 |
-
phi_output_logits = merged_model(inputs_embeds=val_combined_embeds)['logits']
|
87 |
-
predicted_word_token_logits = phi_output_logits[:, -1, :].unsqueeze(1)
|
88 |
-
predicted_word_token = torch.argmax(predicted_word_token_logits, dim
|
89 |
-
predicted_caption[:,
|
90 |
-
next_token_embeds = phi_model.model.embed_tokens(predicted_word_token)
|
91 |
-
val_combined_embeds
|
92 |
|
93 |
-
predicted_captions_decoded = tokenizer.batch_decode(predicted_caption,
|
94 |
|
95 |
return predicted_captions_decoded
|
|
|
|
|
96 |
|
97 |
-
# Gradio Interface
|
98 |
with gr.Blocks() as demo:
|
|
|
99 |
gr.Markdown(
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
)
|
105 |
|
|
|
106 |
with gr.Row():
|
107 |
with gr.Column():
|
108 |
-
img_input
|
109 |
-
img_audio
|
110 |
-
img_question = gr.
|
111 |
-
|
112 |
with gr.Column():
|
113 |
-
img_answer
|
114 |
|
115 |
section_btn = gr.Button("Submit")
|
116 |
-
section_btn.click(model_generate_ans, inputs=[img_input,
|
117 |
|
118 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import peft
|
3 |
from peft import LoraConfig
|
4 |
+
from transformers import AutoTokenizer,BitsAndBytesConfig, AutoModelForCausalLM, CLIPVisionModel, AutoProcessor
|
5 |
import torch
|
6 |
from peft import PeftModel
|
7 |
import torch.nn as nn
|
8 |
import whisperx
|
9 |
import os
|
10 |
|
11 |
+
|
12 |
clip_model_name = "openai/clip-vit-base-patch32"
|
13 |
phi_model_name = "microsoft/phi-2"
|
14 |
tokenizer = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=True)
|
15 |
processor = AutoProcessor.from_pretrained(clip_model_name)
|
16 |
tokenizer.pad_token = tokenizer.eos_token
|
17 |
+
IMAGE_TOKEN_ID = 23893 # token for word comment
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
clip_embed = 768
|
20 |
phi_embed = 2560
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
nn.GELU(),
|
22 |
nn.Linear(phi_embed, phi_embed)
|
23 |
)
|
24 |
+
|
25 |
def forward(self, x):
|
26 |
x = self.pre_norm(x)
|
27 |
return x + self.proj(x)
|
28 |
+
|
29 |
+
# models
|
30 |
clip_model = CLIPVisionModel.from_pretrained(clip_model_name).to(device)
|
31 |
projection = torch.nn.Linear(clip_embed, phi_embed).to(device)
|
32 |
resblock = SimpleResBlock(phi_embed).to(device)
|
33 |
+
phi_model = AutoModelForCausalLM.from_pretrained(phi_model_name,trust_remote_code=True).to(device)
|
34 |
+
# Assuming you have defined 'device' and 'compute_type' elsewhere
|
35 |
audio_model = whisperx.load_model("tiny", device, compute_type=compute_type, asr_options={'max_new_tokens': 2048, 'clip_timestamps': True, 'hallucination_silence_threshold': 0.25})
|
36 |
|
37 |
+
# load weights
|
38 |
+
model_to_merge = PeftModel.from_pretrained(phi_model,os.path.join(os.getcwd(), 'model_chkpt/lora_adaptor'))
|
39 |
+
merged_model = model_to_merge.merge_and_unload()
|
40 |
+
projection.load_state_dict(torch.load(os.path.join(os.getcwd(),'model_chkpt/finetunned_projection.pth'),map_location=torch.device(device)))
|
41 |
+
resblock.load_state_dict(torch.load(os.path.join(os.getcwd(),'model_chkpt/finetuned_resblock.pth'),map_location=torch.device(device)))
|
42 |
+
|
43 |
+
def model_generate_ans(img=None,img_audio=None,val_q=None):
|
44 |
|
45 |
+
max_generate_length = 100
|
46 |
val_combined_embeds = []
|
47 |
|
48 |
with torch.no_grad():
|
49 |
+
|
50 |
+
# image
|
51 |
if img is not None:
|
52 |
+
image_processed = processor(images=img, return_tensors="pt").to(device)
|
53 |
+
clip_val_outputs = clip_model(**image_processed).last_hidden_state[:,1:,:]
|
54 |
val_image_embeds = projection(clip_val_outputs)
|
55 |
val_image_embeds = resblock(val_image_embeds).to(torch.float16)
|
56 |
|
|
|
|
|
|
|
57 |
val_combined_embeds.append(val_image_embeds)
|
58 |
val_combined_embeds.append(img_token_embeds)
|
59 |
|
60 |
+
# audio
|
61 |
if img_audio is not None:
|
62 |
audio_result = audio_model.transcribe(img_audio)
|
63 |
+
audio_text = ''
|
64 |
+
for seg in audio_result['segments']:
|
65 |
+
audio_text += seg['text']
|
66 |
+
audio_text = audio_text.strip()
|
67 |
audio_tokens = tokenizer(audio_text, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
|
68 |
+
audio_embeds = merged_model.model.embed_tokens(audio_tokens).unsqueeze(0)
|
69 |
val_combined_embeds.append(audio_embeds)
|
70 |
+
|
71 |
+
# text question
|
72 |
+
if len(val_q) != 0:
|
73 |
+
val_q_tokenised = tokenizer(val_q, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
|
74 |
+
val_q_embeds = merged_model.model.embed_tokens(val_q_tokenised).unsqueeze(0)
|
75 |
val_combined_embeds.append(val_q_embeds)
|
76 |
|
77 |
+
val_combined_embeds = torch.cat(val_combined_embeds,dim=1)
|
78 |
+
|
79 |
+
#val_combined_embeds = torch.cat([val_image_embeds, img_token_embeds, val_q_embeds], dim=1) # 4, 69, 2560
|
80 |
+
predicted_caption = torch.full((1,max_generate_length),50256).to(device)
|
81 |
|
82 |
+
for g in range(max_generate_length):
|
83 |
+
phi_output_logits = merged_model(inputs_embeds=val_combined_embeds)['logits'] # 4, 69, 51200
|
84 |
+
predicted_word_token_logits = phi_output_logits[:, -1, :].unsqueeze(1) # 4,1,51200
|
85 |
+
predicted_word_token = torch.argmax(predicted_word_token_logits, dim = -1) # 4,1
|
86 |
+
predicted_caption[:,g] = predicted_word_token.view(1,-1)
|
87 |
+
next_token_embeds = phi_model.model.embed_tokens(predicted_word_token) # 4,1,2560
|
88 |
+
val_combined_embeds = torch.cat([val_combined_embeds, next_token_embeds], dim=1)
|
89 |
|
90 |
+
predicted_captions_decoded = tokenizer.batch_decode(predicted_caption,ignore_index = 50256)[0]
|
91 |
|
92 |
return predicted_captions_decoded
|
93 |
+
|
94 |
+
|
95 |
|
|
|
96 |
with gr.Blocks() as demo:
|
97 |
+
|
98 |
gr.Markdown(
|
99 |
+
"""
|
100 |
+
# Chat with MultiModal GPT !
|
101 |
+
Build using combining clip model and phi-2 model.
|
102 |
+
"""
|
103 |
)
|
104 |
|
105 |
+
# app GUI
|
106 |
with gr.Row():
|
107 |
with gr.Column():
|
108 |
+
img_input = gr.Image(label='Image',type="pil")
|
109 |
+
img_audio = gr.Audio(label="Audio Query", sources=['microphone', 'upload'], type='filepath')
|
110 |
+
img_question = gr.Text(label ='Text Query')
|
111 |
+
|
112 |
with gr.Column():
|
113 |
+
img_answer = gr.Text(label ='Answer')
|
114 |
|
115 |
section_btn = gr.Button("Submit")
|
116 |
+
section_btn.click(model_generate_ans, inputs=[img_input,img_audio,img_question], outputs=[img_answer])
|
117 |
|
118 |
demo.launch()
|