File size: 5,713 Bytes
3be3f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import streamlit as st 
import pandas as pd
import matplotlib.pyplot as plt
from plot_app import Plot
plotter = Plot()
from recipes import (
    recipes_1_cotton_dark,
    recipes_2_cotton_medium,
    recipes_3_cotton_light,
    recipes_4_polyester_dark,
    recipes_5_pc_dark,
    cotton_cotton_lycra
)
recipes_dict = {
    ("cotton", "dark"): recipes_1_cotton_dark,
    ("cotton", "medium"): recipes_2_cotton_medium,
    ("cotton", "light"): recipes_3_cotton_light,
    ("polyester", "dark"): recipes_4_polyester_dark,
    ("polycotton", "dark"): recipes_5_pc_dark,
    ("lycra","dark"): cotton_cotton_lycra
}
latent_heat  = 494
    
def calculate_outputs(mlr, recipes, capacity):
    """Perform calculations for each machine."""
    steam_consumption = []
    moment_time = 0
    time = []
    initial_temp = []
    final_temp = []
    temp_grad = []
    for i in recipes:
        time.append(moment_time)
        delta_t = recipes[i]["Duration"]
        moment_time += delta_t

        temp_diff = recipes[i]["final_temp"] - recipes[i]["init_temp"]
        final_temp.append(recipes[i]["final_temp"])
        initial_temp.append(recipes[i]["init_temp"])
        temp_grad.append(recipes[i]["temp.grad"])
        temp = recipes[i]["temp.grad"]
        temp_diff = abs(temp_diff)
        steam_use = (capacity * mlr * temp_diff*1) + (capacity * temp_diff*1)  # cp = 1
        if temp != 0 :
            steam_ = steam_use*60/temp
        else:
            steam_ = steam_use*60
        steam_kg_hr = steam_/latent_heat
        steam_consumption.append(round(steam_kg_hr,2))
    
    return {
        "Steam Consumption": steam_consumption,
        "Time": time,
        "init_Temp": initial_temp,
        "final_Temp": final_temp,
        "temp_grad": temp_grad
    }

def calculate_peak_avg_load(machine_results):
    """Calculate peak and average steam load for all machines."""
    combined_steam_load = {}
    start_time_offset = 0
    
    for machine, results in machine_results.items():
        for t, load in zip(results["Time"], results["Steam Consumption"]):
            adjusted_time = t + start_time_offset
            if adjusted_time in combined_steam_load:
                combined_steam_load[adjusted_time] += load
            else:
                combined_steam_load[adjusted_time] = load
        start_time_offset += 10  # Each machine starts 10 units after the previous one
    
    peak_load = max(combined_steam_load.values())
    avg_load = sum(combined_steam_load.values()) / len(combined_steam_load)
    
    return peak_load, avg_load

def convert_df_to_csv(df):
    return df.to_csv(index=False).encode('utf-8')

st.title("Dyeing Machine Load & Steam Calculator")

machine_type = st.selectbox("Select Type of Machine", ['SoftFlow'])
num_machines = st.number_input("Number of Dyeing Machines", min_value=1, value=5)
mlr = st.number_input("Enter the MLR for the process", min_value=2, value=6)
machine_capacities = {}

st.write("### Enter Machine Capacities")
for i in range(1, num_machines + 1):
    capacity = st.number_input(f"Capacity of Machine {i} (kg)", min_value=1, value=100)
    machine_capacities[f"{machine_type} {i}"] = capacity

toggle_fetch = st.checkbox("Take pre-built Recipe")
if toggle_fetch:
    fabric = st.radio("Choose Fabric Type", ["Cotton", "Polyester", "PolyCotton","Lycra"], index=0)
    shade = st.radio("Choose your Shade", ["Dark", "Medium", "Light", "White"])
    fabric_type = fabric.strip().lower()
    shade = shade.strip().lower()
    recipes = recipes_dict.get((fabric_type, shade), {})
else:
    recipes = {}

st.write("### Results")
if "current_machine_index" not in st.session_state:
    st.session_state["current_machine_index"] = 0

machine_names = list(machine_capacities.keys())
machine_results = {}
for machine in machine_names:
    machine_results[machine] = calculate_outputs(mlr, recipes, machine_capacities[machine])

peak_load, avg_load = calculate_peak_avg_load(machine_results)

if st.button("Calculate Summary"):
    st.markdown(
        f"""
        <div style='padding:10px; border-radius:10px; background-color:#05f5f5;'>
            <h3 style='color:black;'>Summary</h3>
            <p style='color:black;'><strong>Peak Steam Load:</strong> {peak_load} kg/hr</p>
            <p style='color:black;'><strong>Average Steam Load:</strong> {avg_load} kg/hr</p>
        </div>
        """,
        unsafe_allow_html=True,
    )

col1, col2 = st.columns(2)
with col1:
    if st.button("Previous Machine"):
        st.session_state["current_machine_index"] = (st.session_state["current_machine_index"] - 1) % len(machine_names)
with col2:
    if st.button("Next Machine"):
        st.session_state["current_machine_index"] = (st.session_state["current_machine_index"] + 1) % len(machine_names)

current_machine = machine_names[st.session_state["current_machine_index"]]
st.write(f"### Calculations for {current_machine}")
df_results = pd.DataFrame(machine_results[current_machine])
st.table(df_results)

csv = convert_df_to_csv(df_results)
st.download_button("Download Table as CSV", data=csv, file_name=f"{current_machine}_results.csv", mime='text/csv')

st.header("Steam Load Variation Over Time")
if st.button("Plot Steam Load Variation"):
    fig1 = plotter.plot_steam_load(machine_results[current_machine]['Time'], machine_results[current_machine]['Steam Consumption'])
    st.pyplot(fig1)
    
st.header("Temperature Variation Over Time")
if st.button("Plot Temperature Variation"):
    fig2 = plotter.plot_temperature_curve(machine_results[current_machine]['Time'], machine_results[current_machine]['init_Temp'], machine_results[current_machine]['final_Temp'], machine_results[current_machine]['temp_grad'])
    st.pyplot(fig2)