Spaces:
Build error
Build error
from torch.nn.modules.loss import _Loss | |
from torch.autograd import Variable | |
import torch | |
import time | |
import numpy as np | |
import torch.nn as nn | |
import random | |
import torch.backends.cudnn as cudnn | |
from lib.knn.__init__ import KNearestNeighbor | |
def loss_calculation(pred_r, pred_t, pred_c, target, model_points, idx, points, w, refine, num_point_mesh, sym_list): | |
knn = KNearestNeighbor(1) | |
bs, num_p, _ = pred_c.size() | |
pred_r = pred_r / (torch.norm(pred_r, dim=2).view(bs, num_p, 1)) | |
base = torch.cat(((1.0 - 2.0*(pred_r[:, :, 2]**2 + pred_r[:, :, 3]**2)).view(bs, num_p, 1),\ | |
(2.0*pred_r[:, :, 1]*pred_r[:, :, 2] - 2.0*pred_r[:, :, 0]*pred_r[:, :, 3]).view(bs, num_p, 1), \ | |
(2.0*pred_r[:, :, 0]*pred_r[:, :, 2] + 2.0*pred_r[:, :, 1]*pred_r[:, :, 3]).view(bs, num_p, 1), \ | |
(2.0*pred_r[:, :, 1]*pred_r[:, :, 2] + 2.0*pred_r[:, :, 3]*pred_r[:, :, 0]).view(bs, num_p, 1), \ | |
(1.0 - 2.0*(pred_r[:, :, 1]**2 + pred_r[:, :, 3]**2)).view(bs, num_p, 1), \ | |
(-2.0*pred_r[:, :, 0]*pred_r[:, :, 1] + 2.0*pred_r[:, :, 2]*pred_r[:, :, 3]).view(bs, num_p, 1), \ | |
(-2.0*pred_r[:, :, 0]*pred_r[:, :, 2] + 2.0*pred_r[:, :, 1]*pred_r[:, :, 3]).view(bs, num_p, 1), \ | |
(2.0*pred_r[:, :, 0]*pred_r[:, :, 1] + 2.0*pred_r[:, :, 2]*pred_r[:, :, 3]).view(bs, num_p, 1), \ | |
(1.0 - 2.0*(pred_r[:, :, 1]**2 + pred_r[:, :, 2]**2)).view(bs, num_p, 1)), dim=2).contiguous().view(bs * num_p, 3, 3) | |
ori_base = base | |
base = base.contiguous().transpose(2, 1).contiguous() | |
model_points = model_points.view(bs, 1, num_point_mesh, 3).repeat(1, num_p, 1, 1).view(bs * num_p, num_point_mesh, 3) | |
target = target.view(bs, 1, num_point_mesh, 3).repeat(1, num_p, 1, 1).view(bs * num_p, num_point_mesh, 3) | |
ori_target = target | |
pred_t = pred_t.contiguous().view(bs * num_p, 1, 3) | |
ori_t = pred_t | |
points = points.contiguous().view(bs * num_p, 1, 3) | |
pred_c = pred_c.contiguous().view(bs * num_p) | |
pred = torch.add(torch.bmm(model_points, base), points + pred_t) | |
if not refine: | |
if idx[0].item() in sym_list: | |
target = target[0].transpose(1, 0).contiguous().view(3, -1) | |
pred = pred.permute(2, 0, 1).contiguous().view(3, -1) | |
inds = knn(target.unsqueeze(0), pred.unsqueeze(0)) | |
target = torch.index_select(target, 1, inds.view(-1) - 1) | |
target = target.view(3, bs * num_p, num_point_mesh).permute(1, 2, 0).contiguous() | |
pred = pred.view(3, bs * num_p, num_point_mesh).permute(1, 2, 0).contiguous() | |
dis = torch.mean(torch.norm((pred - target), dim=2), dim=1) | |
loss = torch.mean((dis * pred_c - w * torch.log(pred_c)), dim=0) | |
pred_c = pred_c.view(bs, num_p) | |
how_max, which_max = torch.max(pred_c, 1) | |
dis = dis.view(bs, num_p) | |
t = ori_t[which_max[0]] + points[which_max[0]] | |
points = points.view(1, bs * num_p, 3) | |
ori_base = ori_base[which_max[0]].view(1, 3, 3).contiguous() | |
ori_t = t.repeat(bs * num_p, 1).contiguous().view(1, bs * num_p, 3) | |
new_points = torch.bmm((points - ori_t), ori_base).contiguous() | |
new_target = ori_target[0].view(1, num_point_mesh, 3).contiguous() | |
ori_t = t.repeat(num_point_mesh, 1).contiguous().view(1, num_point_mesh, 3) | |
new_target = torch.bmm((new_target - ori_t), ori_base).contiguous() | |
# print('------------> ', dis[0][which_max[0]].item(), pred_c[0][which_max[0]].item(), idx[0].item()) | |
del knn | |
return loss, dis[0][which_max[0]], new_points.detach(), new_target.detach() | |
class Loss(_Loss): | |
def __init__(self, num_points_mesh, sym_list): | |
super(Loss, self).__init__(True) | |
self.num_pt_mesh = num_points_mesh | |
self.sym_list = sym_list | |
def forward(self, pred_r, pred_t, pred_c, target, model_points, idx, points, w, refine): | |
return loss_calculation(pred_r, pred_t, pred_c, target, model_points, idx, points, w, refine, self.num_pt_mesh, self.sym_list) | |