Spaces:
Build error
Build error
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
import lib.extractors as extractors | |
class PSPModule(nn.Module): | |
def __init__(self, features, out_features=1024, sizes=(1, 2, 3, 6)): | |
super(PSPModule, self).__init__() | |
self.stages = [] | |
self.stages = nn.ModuleList([self._make_stage(features, size) for size in sizes]) | |
self.bottleneck = nn.Conv2d(features * (len(sizes) + 1), out_features, kernel_size=1) | |
self.relu = nn.ReLU() | |
def _make_stage(self, features, size): | |
prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) | |
conv = nn.Conv2d(features, features, kernel_size=1, bias=False) | |
return nn.Sequential(prior, conv) | |
def forward(self, feats): | |
h, w = feats.size(2), feats.size(3) | |
priors = [F.upsample(input=stage(feats), size=(h, w), mode='bilinear') for stage in self.stages] + [feats] | |
bottle = self.bottleneck(torch.cat(priors, 1)) | |
return self.relu(bottle) | |
class PSPUpsample(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(PSPUpsample, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), | |
nn.Conv2d(in_channels, out_channels, 3, padding=1), | |
nn.PReLU() | |
) | |
def forward(self, x): | |
return self.conv(x) | |
class PSPNet(nn.Module): | |
def __init__(self, n_classes=21, sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet18', | |
pretrained=False): | |
super(PSPNet, self).__init__() | |
self.feats = getattr(extractors, backend)(pretrained) | |
self.psp = PSPModule(psp_size, 1024, sizes) | |
self.drop_1 = nn.Dropout2d(p=0.3) | |
self.up_1 = PSPUpsample(1024, 256) | |
self.up_2 = PSPUpsample(256, 64) | |
self.up_3 = PSPUpsample(64, 64) | |
self.drop_2 = nn.Dropout2d(p=0.15) | |
self.final = nn.Sequential( | |
nn.Conv2d(64, 32, kernel_size=1), | |
nn.LogSoftmax() | |
) | |
self.classifier = nn.Sequential( | |
nn.Linear(deep_features_size, 256), | |
nn.ReLU(), | |
nn.Linear(256, n_classes) | |
) | |
def forward(self, x): | |
f, class_f = self.feats(x) | |
p = self.psp(f) | |
p = self.drop_1(p) | |
p = self.up_1(p) | |
p = self.drop_2(p) | |
p = self.up_2(p) | |
p = self.drop_2(p) | |
p = self.up_3(p) | |
return self.final(p) | |