File size: 11,112 Bytes
372531f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
---

slug: building-openai-assistant
title: How to build an OpenAI Assistant with Internet access
authors: [assafe]
tags: [tavily, search-api, openai, assistant-api]
---


OpenAI has done it again with a [groundbreaking DevDay](https://openai.com/blog/new-models-and-developer-products-announced-at-devday) showcasing some of the latest improvements to the OpenAI suite of tools, products and services. One major release was the new [Assistants API](https://platform.openai.com/docs/assistants/overview) that makes it easier for developers to build their own assistive AI apps that have goals and can call models and tools.

The new Assistants API currently supports three types of tools: Code Interpreter, Retrieval, and Function calling. Although you might expect the Retrieval tool to support online information retrieval (such as search APIs or as ChatGPT plugins), it only supports raw data for now such as text or CSV files.

This blog will demonstrate how to leverage the latest Assistants API with online information using the function calling tool.

To skip the tutorial below, feel free to check out the full [Github Gist here](https://gist.github.com/assafelovic/579822cd42d52d80db1e1c1ff82ffffd).

At a high level, a typical integration of the Assistants API has the following steps:

- Create an [Assistant](https://platform.openai.com/docs/api-reference/assistants/createAssistant) in the API by defining its custom instructions and picking a model. If helpful, enable tools like Code Interpreter, Retrieval, and Function calling.
- Create a [Thread](https://platform.openai.com/docs/api-reference/threads) when a user starts a conversation.
- Add [Messages](https://platform.openai.com/docs/api-reference/messages) to the Thread as the user ask questions.
- [Run](https://platform.openai.com/docs/api-reference/runs) the Assistant on the Thread to trigger responses. This automatically calls the relevant tools.

As you can see below, an Assistant object includes Threads for storing and handling conversation sessions between the assistant and users, and Run for invocation of an Assistant on a Thread.

![OpenAI Assistant Object](./diagram-assistant.jpeg)

Let’s go ahead and implement these steps one by one! For the example, we will build a finance GPT that can provide insights about financial questions. We will use the [OpenAI Python SDK v1.2](https://github.com/openai/openai-python/tree/main#installation) and [Tavily Search API](https://tavily.com).

First things first, let’s define the assistant’s instructions:

```python

assistant_prompt_instruction = """You are a finance expert. 

Your goal is to provide answers based on information from the internet. 

You must use the provided Tavily search API function to find relevant online information. 

You should never use your own knowledge to answer questions.

Please include relevant url sources in the end of your answers.

"""

```
Next, let’s finalize step 1 and create an assistant using the latest [GPT-4 Turbo model](https://github.com/openai/openai-python/tree/main#installation) (128K context), and the call function using the [Tavily web search API](https://tavily.com/):

```python

# Create an assistant

assistant = client.beta.assistants.create(

    instructions=assistant_prompt_instruction,

    model="gpt-4-1106-preview",

    tools=[{

        "type": "function",

        "function": {

            "name": "tavily_search",

            "description": "Get information on recent events from the web.",

            "parameters": {

                "type": "object",

                "properties": {

                    "query": {"type": "string", "description": "The search query to use. For example: 'Latest news on Nvidia stock performance'"},

                },

                "required": ["query"]

            }

        }

    }]

)

```

Step 2+3 are quite straight forward, we’ll initiate a new thread and update it with a user message:

```python

thread = client.beta.threads.create()

user_input = input("You: ")

message = client.beta.threads.messages.create(

    thread_id=thread.id,

    role="user",

    content=user_input,

)

```

Finally, we’ll run the assistant on the thread to trigger the function call and get the response:

```python

run = client.beta.threads.runs.create(

    thread_id=thread.id,

    assistant_id=assistant_id,

)

```

So far so good! But this is where it gets a bit messy. Unlike with the regular GPT APIs, the Assistants API doesn’t return a synchronous response, but returns a status. This allows for asynchronous operations across assistants, but requires more overhead for fetching statuses and dealing with each manually.

![Status Diagram](./diagram-1.png)

To manage this status lifecycle, let’s build a function that can be reused and handles waiting for various statuses (such as ‘requires_action’):



```python

# Function to wait for a run to complete

def wait_for_run_completion(thread_id, run_id):
    while True:

        time.sleep(1)

        run = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run_id)

        print(f"Current run status: {run.status}")

        if run.status in ['completed', 'failed', 'requires_action']:

            return run

```


This function will sleep as long as the run has not been finalized such as in cases where it’s completed or requires an action from a function call.

We’re almost there! Lastly, let’s take care of when the assistant wants to call the web search API:

```python

# Function to handle tool output submission

def submit_tool_outputs(thread_id, run_id, tools_to_call):

    tool_output_array = []

    for tool in tools_to_call:

        output = None

        tool_call_id = tool.id

        function_name = tool.function.name

        function_args = tool.function.arguments



        if function_name == "tavily_search":

            output = tavily_search(query=json.loads(function_args)["query"])



        if output:

            tool_output_array.append({"tool_call_id": tool_call_id, "output": output})



    return client.beta.threads.runs.submit_tool_outputs(

        thread_id=thread_id,

        run_id=run_id,

        tool_outputs=tool_output_array

    )

```

As seen above, if the assistant has reasoned that a function call should trigger, we extract the given required function params and pass back to the runnable thread. We catch this status and call our functions as seen below:

```python

if run.status == 'requires_action':

    run = submit_tool_outputs(thread.id, run.id, run.required_action.submit_tool_outputs.tool_calls)

    run = wait_for_run_completion(thread.id, run.id)

```

That’s it! We now have a working OpenAI Assistant that can be used to answer financial questions using real time online information. Below is the full runnable code:

```python

import os

import json

import time

from openai import OpenAI

from tavily import TavilyClient



# Initialize clients with API keys

client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])

tavily_client = TavilyClient(api_key=os.environ["TAVILY_API_KEY"])



assistant_prompt_instruction = """You are a finance expert. 

Your goal is to provide answers based on information from the internet. 

You must use the provided Tavily search API function to find relevant online information. 

You should never use your own knowledge to answer questions.

Please include relevant url sources in the end of your answers.

"""



# Function to perform a Tavily search

def tavily_search(query):

    search_result = tavily_client.get_search_context(query, search_depth="advanced", max_tokens=8000)

    return search_result



# Function to wait for a run to complete

def wait_for_run_completion(thread_id, run_id):

    while True:

        time.sleep(1)

        run = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run_id)

        print(f"Current run status: {run.status}")

        if run.status in ['completed', 'failed', 'requires_action']:

            return run



# Function to handle tool output submission

def submit_tool_outputs(thread_id, run_id, tools_to_call):

    tool_output_array = []

    for tool in tools_to_call:

        output = None

        tool_call_id = tool.id

        function_name = tool.function.name

        function_args = tool.function.arguments



        if function_name == "tavily_search":

            output = tavily_search(query=json.loads(function_args)["query"])



        if output:

            tool_output_array.append({"tool_call_id": tool_call_id, "output": output})



    return client.beta.threads.runs.submit_tool_outputs(

        thread_id=thread_id,

        run_id=run_id,

        tool_outputs=tool_output_array

    )



# Function to print messages from a thread

def print_messages_from_thread(thread_id):

    messages = client.beta.threads.messages.list(thread_id=thread_id)

    for msg in messages:

        print(f"{msg.role}: {msg.content[0].text.value}")



# Create an assistant

assistant = client.beta.assistants.create(

    instructions=assistant_prompt_instruction,

    model="gpt-4-1106-preview",

    tools=[{

        "type": "function",

        "function": {

            "name": "tavily_search",

            "description": "Get information on recent events from the web.",

            "parameters": {

                "type": "object",

                "properties": {

                    "query": {"type": "string", "description": "The search query to use. For example: 'Latest news on Nvidia stock performance'"},

                },

                "required": ["query"]

            }

        }

    }]

)

assistant_id = assistant.id

print(f"Assistant ID: {assistant_id}")



# Create a thread

thread = client.beta.threads.create()

print(f"Thread: {thread}")



# Ongoing conversation loop

while True:

    user_input = input("You: ")

    if user_input.lower() == 'exit':

        break



    # Create a message

    message = client.beta.threads.messages.create(

        thread_id=thread.id,

        role="user",

        content=user_input,

    )



    # Create a run

    run = client.beta.threads.runs.create(

        thread_id=thread.id,

        assistant_id=assistant_id,

    )

    print(f"Run ID: {run.id}")



    # Wait for run to complete

    run = wait_for_run_completion(thread.id, run.id)



    if run.status == 'failed':

        print(run.error)

        continue

    elif run.status == 'requires_action':

        run = submit_tool_outputs(thread.id, run.id, run.required_action.submit_tool_outputs.tool_calls)

        run = wait_for_run_completion(thread.id, run.id)



    # Print messages from the thread

    print_messages_from_thread(thread.id)

```

The assistant can be further customized and improved using additional retrieval information, OpenAI’s coding interpreter and more. Also, you can go ahead and add more function tools to make the assistant even smarter.

Feel free to drop a comment below if you have any further questions!