Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -18,12 +18,6 @@ from huggingface_hub import InferenceClient
|
|
18 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
19 |
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
20 |
|
21 |
-
# Initialize the InferenceClient
|
22 |
-
client = InferenceClient(
|
23 |
-
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
24 |
-
token=huggingface_token, # Use your environment variable for the token
|
25 |
-
)
|
26 |
-
|
27 |
# Initialize LlamaParse
|
28 |
llama_parser = LlamaParse(
|
29 |
api_key=llama_cloud_api_key,
|
@@ -33,7 +27,7 @@ llama_parser = LlamaParse(
|
|
33 |
language="en",
|
34 |
)
|
35 |
|
36 |
-
def load_document(file: NamedTemporaryFile, parser: str = "
|
37 |
"""Loads and splits the document into pages."""
|
38 |
if parser == "pypdf":
|
39 |
loader = PyPDFLoader(file.name)
|
@@ -76,34 +70,38 @@ def update_vectors(files, parser):
|
|
76 |
|
77 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
|
78 |
|
79 |
-
def generate_chunked_response(prompt, max_tokens=1000, max_chunks=5, temperature=0.
|
|
|
|
|
|
|
|
|
|
|
80 |
full_response = ""
|
|
|
|
|
81 |
for _ in range(max_chunks):
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
if not new_content:
|
97 |
-
break # No new content, so we're done
|
98 |
-
|
99 |
-
full_response += new_content
|
100 |
|
101 |
-
if
|
102 |
break
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
107 |
break
|
108 |
|
109 |
# Clean up the response
|
@@ -184,11 +182,11 @@ def chatbot_interface(message, history, use_web_search, temperature, repetition_
|
|
184 |
|
185 |
# Gradio interface
|
186 |
with gr.Blocks() as demo:
|
187 |
-
gr.Markdown("# AI-powered Web Search and PDF Chat Assistant")
|
188 |
|
189 |
with gr.Row():
|
190 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
191 |
-
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="
|
192 |
update_button = gr.Button("Upload Document")
|
193 |
|
194 |
update_output = gr.Textbox(label="Update Status")
|
|
|
18 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
19 |
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# Initialize LlamaParse
|
22 |
llama_parser = LlamaParse(
|
23 |
api_key=llama_cloud_api_key,
|
|
|
27 |
language="en",
|
28 |
)
|
29 |
|
30 |
+
def load_document(file: NamedTemporaryFile, parser: str = "pypdf") -> List[Document]:
|
31 |
"""Loads and splits the document into pages."""
|
32 |
if parser == "pypdf":
|
33 |
loader = PyPDFLoader(file.name)
|
|
|
70 |
|
71 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
|
72 |
|
73 |
+
def generate_chunked_response(prompt, max_tokens=1000, max_chunks=5, temperature=0.2, repetition_penalty=1.1):
|
74 |
+
client = InferenceClient(
|
75 |
+
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
76 |
+
token=huggingface_token,
|
77 |
+
)
|
78 |
+
|
79 |
full_response = ""
|
80 |
+
messages = [{"role": "user", "content": prompt}]
|
81 |
+
|
82 |
for _ in range(max_chunks):
|
83 |
+
try:
|
84 |
+
chunk_response = ""
|
85 |
+
for message in client.chat_completion(
|
86 |
+
messages=messages,
|
87 |
+
max_new_tokens=max_tokens,
|
88 |
+
temperature=temperature,
|
89 |
+
repetition_penalty=repetition_penalty,
|
90 |
+
stream=True,
|
91 |
+
):
|
92 |
+
chunk = message.choices[0].delta.content
|
93 |
+
if chunk:
|
94 |
+
chunk_response += chunk
|
95 |
+
full_response += chunk
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
if not chunk_response or chunk_response.endswith((".", "!", "?", "</s>", "[/INST]")):
|
98 |
break
|
99 |
|
100 |
+
messages.append({"role": "assistant", "content": chunk_response})
|
101 |
+
messages.append({"role": "user", "content": "Continue"})
|
102 |
+
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Error in generating response: {str(e)}")
|
105 |
break
|
106 |
|
107 |
# Clean up the response
|
|
|
182 |
|
183 |
# Gradio interface
|
184 |
with gr.Blocks() as demo:
|
185 |
+
gr.Markdown("# AI-powered Web Search and PDF Chat Assistant (Using Meta-Llama-3.1-8B-Instruct)")
|
186 |
|
187 |
with gr.Row():
|
188 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
189 |
+
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="pypdf")
|
190 |
update_button = gr.Button("Upload Document")
|
191 |
|
192 |
update_output = gr.Textbox(label="Update Status")
|