Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -116,16 +116,13 @@ def update_vectors(files, parser):
|
|
116 |
label="Select documents to query"
|
117 |
)
|
118 |
|
119 |
-
def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=
|
120 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
121 |
full_response = ""
|
122 |
messages = [{"role": "user", "content": prompt}]
|
123 |
|
124 |
-
if continuation:
|
125 |
-
messages.insert(0, {"role": "system", "content": "This is a continuation of a previous response. Please continue from where you left off, maintaining coherence and avoiding repetition."})
|
126 |
-
|
127 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
128 |
-
# Cloudflare API
|
129 |
for i in range(num_calls):
|
130 |
print(f"Starting Cloudflare API call {i+1}")
|
131 |
if should_stop:
|
@@ -136,12 +133,15 @@ def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=1, tempe
|
|
136 |
f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
|
137 |
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
138 |
json={
|
139 |
-
"stream":
|
140 |
-
"messages":
|
|
|
|
|
|
|
141 |
"max_tokens": max_tokens,
|
142 |
"temperature": temperature
|
143 |
},
|
144 |
-
stream=
|
145 |
)
|
146 |
|
147 |
for line in response.iter_lines():
|
@@ -153,16 +153,11 @@ def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=1, tempe
|
|
153 |
json_data = json.loads(line.decode('utf-8').split('data: ')[1])
|
154 |
chunk = json_data['response']
|
155 |
full_response += chunk
|
156 |
-
yield full_response
|
157 |
except json.JSONDecodeError:
|
158 |
continue
|
159 |
print(f"Cloudflare API call {i+1} completed")
|
160 |
except Exception as e:
|
161 |
-
|
162 |
-
print("Generation cancelled")
|
163 |
-
return
|
164 |
-
else:
|
165 |
-
print(f"Error in generating response from Cloudflare: {str(e)}")
|
166 |
else:
|
167 |
# Original Hugging Face API logic
|
168 |
client = InferenceClient(model, token=huggingface_token)
|
@@ -185,14 +180,9 @@ def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=1, tempe
|
|
185 |
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
186 |
chunk = message.choices[0].delta.content
|
187 |
full_response += chunk
|
188 |
-
yield full_response
|
189 |
print(f"Hugging Face API call {i+1} completed")
|
190 |
except Exception as e:
|
191 |
-
|
192 |
-
print("Generation cancelled")
|
193 |
-
return
|
194 |
-
else:
|
195 |
-
print(f"Error in generating response from Hugging Face: {str(e)}")
|
196 |
|
197 |
# Clean up the response
|
198 |
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
|
@@ -214,7 +204,7 @@ def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=1, tempe
|
|
214 |
final_response = '\n\n'.join(unique_paragraphs)
|
215 |
|
216 |
print(f"Final clean response: {final_response[:100]}...")
|
217 |
-
|
218 |
|
219 |
def duckduckgo_search(query):
|
220 |
with DDGS() as ddgs:
|
@@ -226,26 +216,6 @@ class CitingSources(BaseModel):
|
|
226 |
...,
|
227 |
description="List of sources to cite. Should be an URL of the source."
|
228 |
)
|
229 |
-
def chatbot_interface(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
230 |
-
if not message.strip():
|
231 |
-
return history
|
232 |
-
|
233 |
-
for response in respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
234 |
-
yield response
|
235 |
-
|
236 |
-
# Make the Continue Generation button visible after the response is complete
|
237 |
-
demo.update(visible=True, elem_id="continue_btn")
|
238 |
-
|
239 |
-
try:
|
240 |
-
for response in respond(message, history, model, temperature, num_calls, use_web_search):
|
241 |
-
history[-1] = (message, response)
|
242 |
-
yield history
|
243 |
-
except gr.CancelledError:
|
244 |
-
yield history
|
245 |
-
except Exception as e:
|
246 |
-
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
|
247 |
-
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
248 |
-
yield history
|
249 |
|
250 |
def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
251 |
if not history:
|
@@ -257,30 +227,59 @@ def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
|
257 |
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
258 |
|
259 |
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
260 |
-
|
261 |
-
|
|
|
262 |
|
263 |
-
|
264 |
|
265 |
try:
|
266 |
if use_web_search:
|
267 |
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
268 |
response = f"{main_content}\n\n{sources}"
|
269 |
-
|
270 |
-
|
|
|
271 |
else:
|
272 |
-
|
273 |
-
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
except Exception as e:
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
278 |
else:
|
279 |
-
|
280 |
-
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
281 |
-
yield history
|
282 |
-
|
283 |
-
return history # Ensure we always return the history at the end
|
284 |
|
285 |
logging.basicConfig(level=logging.DEBUG)
|
286 |
|
@@ -338,37 +337,6 @@ After writing the document, please provide a list of sources used in your respon
|
|
338 |
if not full_response:
|
339 |
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
|
340 |
|
341 |
-
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
342 |
-
search_results = duckduckgo_search(query)
|
343 |
-
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
344 |
-
for result in search_results if 'body' in result)
|
345 |
-
|
346 |
-
prompt = f"""Using the following context:
|
347 |
-
{context}
|
348 |
-
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
349 |
-
After writing the document, please provide a list of sources used in your response."""
|
350 |
-
|
351 |
-
if model == "@cf/meta/llama-3.1-8b-instruct":
|
352 |
-
# Use Cloudflare API
|
353 |
-
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
|
354 |
-
yield response, "" # Yield streaming response without sources
|
355 |
-
else:
|
356 |
-
# Use Hugging Face API
|
357 |
-
client = InferenceClient(model, token=huggingface_token)
|
358 |
-
|
359 |
-
main_content = ""
|
360 |
-
for i in range(num_calls):
|
361 |
-
for message in client.chat_completion(
|
362 |
-
messages=[{"role": "user", "content": prompt}],
|
363 |
-
max_tokens=1000,
|
364 |
-
temperature=temperature,
|
365 |
-
stream=True,
|
366 |
-
):
|
367 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
368 |
-
chunk = message.choices[0].delta.content
|
369 |
-
main_content += chunk
|
370 |
-
yield main_content, "" # Yield partial main content without sources
|
371 |
-
|
372 |
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
373 |
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
374 |
|
@@ -386,7 +354,6 @@ def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=
|
|
386 |
relevant_docs = retriever.get_relevant_documents(query)
|
387 |
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
388 |
|
389 |
-
# Filter relevant_docs based on selected documents
|
390 |
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
391 |
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
|
392 |
|
@@ -395,28 +362,24 @@ def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=
|
|
395 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
396 |
return
|
397 |
|
398 |
-
for doc in filtered_docs:
|
399 |
-
logging.info(f"Document source: {doc.metadata['source']}")
|
400 |
-
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
|
401 |
-
|
402 |
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
403 |
logging.info(f"Total context length: {len(context_str)}")
|
404 |
|
|
|
|
|
405 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
406 |
logging.info("Using Cloudflare API")
|
407 |
-
# Use Cloudflare API with the retrieved context
|
408 |
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
409 |
-
|
|
|
410 |
else:
|
411 |
logging.info("Using Hugging Face API")
|
412 |
-
# Use Hugging Face API
|
413 |
prompt = f"""Using the following context from the PDF documents:
|
414 |
{context_str}
|
415 |
Write a detailed and complete response that answers the following user question: '{query}'"""
|
416 |
|
417 |
client = InferenceClient(model, token=huggingface_token)
|
418 |
|
419 |
-
response = ""
|
420 |
for i in range(num_calls):
|
421 |
logging.info(f"API call {i+1}/{num_calls}")
|
422 |
for message in client.chat_completion(
|
@@ -427,44 +390,121 @@ Write a detailed and complete response that answers the following user question:
|
|
427 |
):
|
428 |
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
429 |
chunk = message.choices[0].delta.content
|
430 |
-
|
431 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
|
433 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
def vote(data: gr.LikeData):
|
436 |
if data.liked:
|
437 |
print(f"You upvoted this response: {data.value}")
|
438 |
else:
|
439 |
print(f"You downvoted this response: {data.value}")
|
|
|
|
|
|
|
|
|
|
|
440 |
|
441 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
if not history:
|
443 |
return history
|
444 |
|
445 |
last_user_msg = history[-1][0]
|
446 |
-
|
447 |
-
|
448 |
-
continuation_prompt = f"""
|
449 |
-
Previous response: {last_ai_response}
|
450 |
-
|
451 |
-
Original query: {last_user_msg}
|
452 |
-
|
453 |
-
Please continue the response from where you left off, maintaining coherence and avoiding repetition.
|
454 |
-
"""
|
455 |
|
456 |
try:
|
457 |
-
|
458 |
-
|
459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
yield history
|
|
|
|
|
461 |
except Exception as e:
|
462 |
-
logging.error(f"
|
463 |
-
history[-1] = (last_user_msg, f"{
|
464 |
yield history
|
465 |
|
466 |
-
return history
|
467 |
-
|
468 |
css = """
|
469 |
/* Add your custom CSS here */
|
470 |
"""
|
@@ -478,9 +518,7 @@ def display_documents():
|
|
478 |
label="Select documents to query"
|
479 |
)
|
480 |
|
481 |
-
# Define the checkbox outside the demo block
|
482 |
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
483 |
-
|
484 |
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
|
485 |
|
486 |
demo = gr.ChatInterface(
|
@@ -492,6 +530,10 @@ demo = gr.ChatInterface(
|
|
492 |
use_web_search,
|
493 |
document_selector
|
494 |
],
|
|
|
|
|
|
|
|
|
495 |
title="AI-powered Web Search and PDF Chat Assistant",
|
496 |
description="Chat with your PDFs or use web search to answer questions.",
|
497 |
theme=gr.themes.Soft(
|
@@ -529,19 +571,22 @@ with demo:
|
|
529 |
with gr.Row():
|
530 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
531 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
532 |
-
update_button = gr.Button("Upload Document")
|
533 |
|
534 |
update_output = gr.Textbox(label="Update Status")
|
535 |
|
536 |
# Update both the output text and the document selector
|
537 |
-
|
538 |
-
|
539 |
-
|
|
|
|
|
540 |
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
|
|
|
|
545 |
|
546 |
gr.Markdown(
|
547 |
"""
|
@@ -552,8 +597,8 @@ with demo:
|
|
552 |
4. Ask questions in the chat interface.
|
553 |
5. Toggle "Use Web Search" to switch between PDF chat and web search.
|
554 |
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
555 |
-
7. Use the
|
556 |
-
8.
|
557 |
"""
|
558 |
)
|
559 |
|
|
|
116 |
label="Select documents to query"
|
117 |
)
|
118 |
|
119 |
+
def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=3, temperature=0.2, should_stop=False):
|
120 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
121 |
full_response = ""
|
122 |
messages = [{"role": "user", "content": prompt}]
|
123 |
|
|
|
|
|
|
|
124 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
125 |
+
# Cloudflare API
|
126 |
for i in range(num_calls):
|
127 |
print(f"Starting Cloudflare API call {i+1}")
|
128 |
if should_stop:
|
|
|
133 |
f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
|
134 |
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
135 |
json={
|
136 |
+
"stream": true,
|
137 |
+
"messages": [
|
138 |
+
{"role": "system", "content": "You are a friendly assistant"},
|
139 |
+
{"role": "user", "content": prompt}
|
140 |
+
],
|
141 |
"max_tokens": max_tokens,
|
142 |
"temperature": temperature
|
143 |
},
|
144 |
+
stream=true
|
145 |
)
|
146 |
|
147 |
for line in response.iter_lines():
|
|
|
153 |
json_data = json.loads(line.decode('utf-8').split('data: ')[1])
|
154 |
chunk = json_data['response']
|
155 |
full_response += chunk
|
|
|
156 |
except json.JSONDecodeError:
|
157 |
continue
|
158 |
print(f"Cloudflare API call {i+1} completed")
|
159 |
except Exception as e:
|
160 |
+
print(f"Error in generating response from Cloudflare: {str(e)}")
|
|
|
|
|
|
|
|
|
161 |
else:
|
162 |
# Original Hugging Face API logic
|
163 |
client = InferenceClient(model, token=huggingface_token)
|
|
|
180 |
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
181 |
chunk = message.choices[0].delta.content
|
182 |
full_response += chunk
|
|
|
183 |
print(f"Hugging Face API call {i+1} completed")
|
184 |
except Exception as e:
|
185 |
+
print(f"Error in generating response from Hugging Face: {str(e)}")
|
|
|
|
|
|
|
|
|
186 |
|
187 |
# Clean up the response
|
188 |
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
|
|
|
204 |
final_response = '\n\n'.join(unique_paragraphs)
|
205 |
|
206 |
print(f"Final clean response: {final_response[:100]}...")
|
207 |
+
return final_response
|
208 |
|
209 |
def duckduckgo_search(query):
|
210 |
with DDGS() as ddgs:
|
|
|
216 |
...,
|
217 |
description="List of sources to cite. Should be an URL of the source."
|
218 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
221 |
if not history:
|
|
|
227 |
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
228 |
|
229 |
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
230 |
+
logging.info(f"User Query: {message}")
|
231 |
+
logging.info(f"Model Used: {model}")
|
232 |
+
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
233 |
|
234 |
+
logging.info(f"Selected Documents: {selected_docs}")
|
235 |
|
236 |
try:
|
237 |
if use_web_search:
|
238 |
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
239 |
response = f"{main_content}\n\n{sources}"
|
240 |
+
first_line = response.split('\n')[0] if response else ''
|
241 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
242 |
+
yield response
|
243 |
else:
|
244 |
+
embed = get_embeddings()
|
245 |
+
if os.path.exists("faiss_database"):
|
246 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
247 |
+
retriever = database.as_retriever()
|
248 |
+
|
249 |
+
# Filter relevant documents based on user selection
|
250 |
+
all_relevant_docs = retriever.get_relevant_documents(message)
|
251 |
+
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
252 |
+
|
253 |
+
if not relevant_docs:
|
254 |
+
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
255 |
+
return
|
256 |
+
|
257 |
+
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
258 |
+
else:
|
259 |
+
context_str = "No documents available."
|
260 |
+
yield "No documents available. Please upload PDF documents to answer questions."
|
261 |
+
return
|
262 |
+
|
263 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
264 |
+
# Use Cloudflare API
|
265 |
+
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
266 |
+
first_line = partial_response.split('\n')[0] if partial_response else ''
|
267 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
268 |
+
yield partial_response
|
269 |
+
else:
|
270 |
+
# Use Hugging Face API
|
271 |
+
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
272 |
+
first_line = partial_response.split('\n')[0] if partial_response else ''
|
273 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
274 |
+
yield partial_response
|
275 |
except Exception as e:
|
276 |
+
logging.error(f"Error with {model}: {str(e)}")
|
277 |
+
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
278 |
+
logging.info("Falling back to Mistral model due to Phi-3 error")
|
279 |
+
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
280 |
+
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
|
281 |
else:
|
282 |
+
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
|
|
|
|
|
|
|
|
283 |
|
284 |
logging.basicConfig(level=logging.DEBUG)
|
285 |
|
|
|
337 |
if not full_response:
|
338 |
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
|
339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
341 |
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
342 |
|
|
|
354 |
relevant_docs = retriever.get_relevant_documents(query)
|
355 |
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
356 |
|
|
|
357 |
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
358 |
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
|
359 |
|
|
|
362 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
363 |
return
|
364 |
|
|
|
|
|
|
|
|
|
365 |
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
366 |
logging.info(f"Total context length: {len(context_str)}")
|
367 |
|
368 |
+
full_response = ""
|
369 |
+
|
370 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
371 |
logging.info("Using Cloudflare API")
|
|
|
372 |
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
373 |
+
full_response += response
|
374 |
+
yield full_response
|
375 |
else:
|
376 |
logging.info("Using Hugging Face API")
|
|
|
377 |
prompt = f"""Using the following context from the PDF documents:
|
378 |
{context_str}
|
379 |
Write a detailed and complete response that answers the following user question: '{query}'"""
|
380 |
|
381 |
client = InferenceClient(model, token=huggingface_token)
|
382 |
|
|
|
383 |
for i in range(num_calls):
|
384 |
logging.info(f"API call {i+1}/{num_calls}")
|
385 |
for message in client.chat_completion(
|
|
|
390 |
):
|
391 |
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
392 |
chunk = message.choices[0].delta.content
|
393 |
+
full_response += chunk
|
394 |
+
yield full_response
|
395 |
+
|
396 |
+
logging.info("Finished generating initial response")
|
397 |
+
|
398 |
+
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
399 |
+
search_results = duckduckgo_search(query)
|
400 |
+
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
401 |
+
for result in search_results if 'body' in result)
|
402 |
+
|
403 |
+
prompt = f"""Using the following context:
|
404 |
+
{context}
|
405 |
+
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
406 |
+
After writing the document, please provide a list of sources used in your response."""
|
407 |
+
|
408 |
+
full_response = ""
|
409 |
+
|
410 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
411 |
+
# Use Cloudflare API
|
412 |
+
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
|
413 |
+
full_response += response
|
414 |
+
yield full_response, "" # Yield streaming response without sources
|
415 |
+
else:
|
416 |
+
# Use Hugging Face API
|
417 |
+
client = InferenceClient(model, token=huggingface_token)
|
418 |
|
419 |
+
for i in range(num_calls):
|
420 |
+
for message in client.chat_completion(
|
421 |
+
messages=[{"role": "user", "content": prompt}],
|
422 |
+
max_tokens=1000,
|
423 |
+
temperature=temperature,
|
424 |
+
stream=True,
|
425 |
+
):
|
426 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
427 |
+
chunk = message.choices[0].delta.content
|
428 |
+
full_response += chunk
|
429 |
+
yield full_response, "" # Yield partial main content without sources
|
430 |
+
|
431 |
+
logging.info("Finished generating initial response")
|
432 |
|
433 |
def vote(data: gr.LikeData):
|
434 |
if data.liked:
|
435 |
print(f"You upvoted this response: {data.value}")
|
436 |
else:
|
437 |
print(f"You downvoted this response: {data.value}")
|
438 |
+
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls, selected_docs):
|
439 |
+
if not message.strip():
|
440 |
+
return "", history
|
441 |
+
|
442 |
+
history = history + [(message, "")]
|
443 |
|
444 |
+
try:
|
445 |
+
if use_web_search:
|
446 |
+
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
447 |
+
response = f"{main_content}\n\n{sources}"
|
448 |
+
history[-1] = (message, response)
|
449 |
+
yield history
|
450 |
+
else:
|
451 |
+
for response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
452 |
+
history[-1] = (message, response)
|
453 |
+
yield history
|
454 |
+
except gr.CancelledError:
|
455 |
+
yield history
|
456 |
+
except Exception as e:
|
457 |
+
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
|
458 |
+
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
459 |
+
yield history
|
460 |
+
|
461 |
+
def continue_generation(history, use_web_search, model, temperature, selected_docs):
|
462 |
if not history:
|
463 |
return history
|
464 |
|
465 |
last_user_msg = history[-1][0]
|
466 |
+
previous_response = history[-1][1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
467 |
|
468 |
try:
|
469 |
+
if use_web_search:
|
470 |
+
search_results = duckduckgo_search(last_user_msg)
|
471 |
+
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
472 |
+
for result in search_results if 'body' in result)
|
473 |
+
else:
|
474 |
+
embed = get_embeddings()
|
475 |
+
if os.path.exists("faiss_database"):
|
476 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
477 |
+
retriever = database.as_retriever()
|
478 |
+
relevant_docs = retriever.get_relevant_documents(last_user_msg)
|
479 |
+
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
480 |
+
context = "\n".join([doc.page_content for doc in filtered_docs])
|
481 |
+
else:
|
482 |
+
return history
|
483 |
+
|
484 |
+
prompt = f"""Using the following context and partial response, please continue and complete the response:
|
485 |
+
|
486 |
+
Context:
|
487 |
+
{context}
|
488 |
+
|
489 |
+
Query: {last_user_msg}
|
490 |
+
|
491 |
+
Partial Response:
|
492 |
+
{previous_response}
|
493 |
+
|
494 |
+
Please continue the response from where it was cut off:"""
|
495 |
+
|
496 |
+
continued_response = previous_response
|
497 |
+
for chunk in get_response_from_cloudflare(prompt=prompt, context="", query="", num_calls=1, temperature=temperature, search_type="continuation"):
|
498 |
+
continued_response += chunk
|
499 |
+
history[-1] = (last_user_msg, continued_response)
|
500 |
yield history
|
501 |
+
except gr.CancelledError:
|
502 |
+
yield history
|
503 |
except Exception as e:
|
504 |
+
logging.error(f"Unexpected error in continue_generation: {str(e)}")
|
505 |
+
history[-1] = (last_user_msg, f"{previous_response}\n\nAn error occurred while continuing generation: {str(e)}")
|
506 |
yield history
|
507 |
|
|
|
|
|
508 |
css = """
|
509 |
/* Add your custom CSS here */
|
510 |
"""
|
|
|
518 |
label="Select documents to query"
|
519 |
)
|
520 |
|
|
|
521 |
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
|
|
522 |
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
|
523 |
|
524 |
demo = gr.ChatInterface(
|
|
|
530 |
use_web_search,
|
531 |
document_selector
|
532 |
],
|
533 |
+
additional_buttons=[
|
534 |
+
gr.Button("Continue Generation"),
|
535 |
+
gr.Button("Upload Document")
|
536 |
+
],
|
537 |
title="AI-powered Web Search and PDF Chat Assistant",
|
538 |
description="Chat with your PDFs or use web search to answer questions.",
|
539 |
theme=gr.themes.Soft(
|
|
|
571 |
with gr.Row():
|
572 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
573 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
|
|
574 |
|
575 |
update_output = gr.Textbox(label="Update Status")
|
576 |
|
577 |
# Update both the output text and the document selector
|
578 |
+
demo.additional_buttons[1].click(
|
579 |
+
update_vectors,
|
580 |
+
inputs=[file_input, parser_dropdown],
|
581 |
+
outputs=[update_output, document_selector]
|
582 |
+
)
|
583 |
|
584 |
+
# Set up the continue generation button
|
585 |
+
demo.additional_buttons[0].click(
|
586 |
+
continue_generation,
|
587 |
+
inputs=[demo.chatbot, use_web_search, demo.additional_inputs[0], demo.additional_inputs[1], document_selector],
|
588 |
+
outputs=demo.chatbot
|
589 |
+
)
|
590 |
|
591 |
gr.Markdown(
|
592 |
"""
|
|
|
597 |
4. Ask questions in the chat interface.
|
598 |
5. Toggle "Use Web Search" to switch between PDF chat and web search.
|
599 |
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
600 |
+
7. Use the "Continue Generation" button if you want to extend the last response.
|
601 |
+
8. Use the provided examples or ask your own questions.
|
602 |
"""
|
603 |
)
|
604 |
|