Spaces:
Build error
Build error
| import os | |
| import json | |
| import gradio as gr | |
| import pandas as pd | |
| from tempfile import NamedTemporaryFile | |
| from typing import List | |
| from langchain_core.prompts import ChatPromptTemplate | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_community.document_loaders import PyPDFLoader | |
| from langchain_core.output_parsers import StrOutputParser | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| from langchain_community.llms import HuggingFaceHub | |
| from langchain_core.runnables import RunnableParallel, RunnablePassthrough | |
| from langchain_core.documents import Document | |
| huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") | |
| def load_and_split_document_basic(file): | |
| """Loads and splits the document into pages.""" | |
| loader = PyPDFLoader(file.name) | |
| data = loader.load_and_split() | |
| return data | |
| def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]: | |
| """Loads and splits the document into chunks.""" | |
| loader = PyPDFLoader(file.name) | |
| pages = loader.load() | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=1000, | |
| chunk_overlap=200, | |
| length_function=len, | |
| ) | |
| chunks = text_splitter.split_documents(pages) | |
| return chunks | |
| def get_embeddings(): | |
| return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
| def create_or_update_database(data, embeddings): | |
| if os.path.exists("faiss_database"): | |
| db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True) | |
| db.add_documents(data) | |
| else: | |
| db = FAISS.from_documents(data, embeddings) | |
| db.save_local("faiss_database") | |
| def clear_cache(): | |
| if os.path.exists("faiss_database"): | |
| os.remove("faiss_database") | |
| return "Cache cleared successfully." | |
| else: | |
| return "No cache to clear." | |
| prompt = """ | |
| Answer the question based only on the following context: | |
| {context} | |
| Question: {question} | |
| Provide a concise and direct answer to the question: | |
| """ | |
| def get_model(temperature, top_p, repetition_penalty): | |
| return HuggingFaceHub( | |
| repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
| model_kwargs={ | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "repetition_penalty": repetition_penalty, | |
| "max_length": 2000 | |
| }, | |
| huggingfacehub_api_token=huggingface_token | |
| ) | |
| def generate_chunked_response(model, prompt, max_tokens=2000, max_chunks=5): | |
| full_response = "" | |
| for i in range(max_chunks): | |
| chunk = model(prompt + full_response, max_new_tokens=max_tokens) | |
| full_response += chunk | |
| if chunk.strip().endswith((".", "!", "?")): | |
| break | |
| return full_response.strip() | |
| def response(database, model, question): | |
| prompt_val = ChatPromptTemplate.from_template(prompt) | |
| retriever = database.as_retriever() | |
| context = retriever.get_relevant_documents(question) | |
| context_str = "\n".join([doc.page_content for doc in context]) | |
| formatted_prompt = prompt_val.format(context=context_str, question=question) | |
| ans = generate_chunked_response(model, formatted_prompt) | |
| return ans | |
| def update_vectors(files, use_recursive_splitter): | |
| if not files: | |
| return "Please upload at least one PDF file." | |
| embed = get_embeddings() | |
| total_chunks = 0 | |
| for file in files: | |
| if use_recursive_splitter: | |
| data = load_and_split_document_recursive(file) | |
| else: | |
| data = load_and_split_document_basic(file) | |
| create_or_update_database(data, embed) | |
| total_chunks += len(data) | |
| return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files." | |
| def ask_question(question, temperature, top_p, repetition_penalty): | |
| if not question: | |
| return "Please enter a question." | |
| embed = get_embeddings() | |
| database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
| model = get_model(temperature, top_p, repetition_penalty) | |
| return response(database, model, question) | |
| def extract_db_to_excel(): | |
| embed = get_embeddings() | |
| database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
| documents = database.docstore._dict.values() | |
| data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents] | |
| df = pd.DataFrame(data) | |
| with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: | |
| excel_path = tmp.name | |
| df.to_excel(excel_path, index=False) | |
| return excel_path | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Chat with your PDF documents") | |
| with gr.Row(): | |
| file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) | |
| update_button = gr.Button("Update Vector Store") | |
| use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False) | |
| update_output = gr.Textbox(label="Update Status") | |
| update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output) | |
| with gr.Row(): | |
| question_input = gr.Textbox(label="Ask a question about your documents") | |
| temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1) | |
| top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1) | |
| repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1) | |
| submit_button = gr.Button("Submit") | |
| answer_output = gr.Textbox(label="Answer") | |
| submit_button.click(ask_question, inputs=[question_input, temperature_slider, top_p_slider, repetition_penalty_slider], outputs=answer_output) | |
| extract_button = gr.Button("Extract Database to Excel") | |
| excel_output = gr.File(label="Download Excel File") | |
| extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output) | |
| clear_button = gr.Button("Clear Cache") | |
| clear_output = gr.Textbox(label="Cache Status") | |
| clear_button.click(clear_cache, inputs=[], outputs=clear_output) | |
| if __name__ == "__main__": | |
| demo.launch() |