Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,10 +13,12 @@ from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
| 13 |
from langchain_community.llms import HuggingFaceHub
|
| 14 |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
| 15 |
from langchain_core.documents import Document
|
|
|
|
| 16 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
| 17 |
|
| 18 |
# Memory database to store question-answer pairs
|
| 19 |
memory_database = {}
|
|
|
|
| 20 |
|
| 21 |
def load_and_split_document_basic(file):
|
| 22 |
"""Loads and splits the document into pages."""
|
|
@@ -57,8 +59,13 @@ def clear_cache():
|
|
| 57 |
return "No cache to clear."
|
| 58 |
|
| 59 |
prompt = """
|
| 60 |
-
Answer the question based
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
{context}
|
|
|
|
| 62 |
Question: {question}
|
| 63 |
|
| 64 |
Provide a concise and direct answer to the question:
|
|
@@ -81,21 +88,46 @@ def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5):
|
|
| 81 |
for i in range(max_chunks):
|
| 82 |
chunk = model(prompt + full_response, max_new_tokens=max_tokens)
|
| 83 |
chunk = chunk.strip()
|
| 84 |
-
# Check for final sentence endings
|
| 85 |
if chunk.endswith((".", "!", "?")):
|
| 86 |
full_response += chunk
|
| 87 |
break
|
| 88 |
full_response += chunk
|
| 89 |
return full_response.strip()
|
| 90 |
|
| 91 |
-
def
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
def update_vectors(files, use_recursive_splitter):
|
| 101 |
if not files:
|
|
@@ -114,26 +146,6 @@ def update_vectors(files, use_recursive_splitter):
|
|
| 114 |
|
| 115 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
|
| 116 |
|
| 117 |
-
def ask_question(question, temperature, top_p, repetition_penalty):
|
| 118 |
-
if not question:
|
| 119 |
-
return "Please enter a question."
|
| 120 |
-
|
| 121 |
-
# Check if the question exists in the memory database
|
| 122 |
-
if question in memory_database:
|
| 123 |
-
return memory_database[question]
|
| 124 |
-
|
| 125 |
-
embed = get_embeddings()
|
| 126 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 127 |
-
model = get_model(temperature, top_p, repetition_penalty)
|
| 128 |
-
|
| 129 |
-
# Generate response from document database
|
| 130 |
-
answer = response(database, model, question)
|
| 131 |
-
|
| 132 |
-
# Store the question and answer in the memory database
|
| 133 |
-
memory_database[question] = answer
|
| 134 |
-
|
| 135 |
-
return answer
|
| 136 |
-
|
| 137 |
def extract_db_to_excel():
|
| 138 |
embed = get_embeddings()
|
| 139 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
|
@@ -150,11 +162,16 @@ def extract_db_to_excel():
|
|
| 150 |
|
| 151 |
def export_memory_db_to_excel():
|
| 152 |
data = [{"question": question, "answer": answer} for question, answer in memory_database.items()]
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
|
| 156 |
excel_path = tmp.name
|
| 157 |
-
|
|
|
|
|
|
|
| 158 |
|
| 159 |
return excel_path
|
| 160 |
|
|
@@ -171,14 +188,21 @@ with gr.Blocks() as demo:
|
|
| 171 |
update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output)
|
| 172 |
|
| 173 |
with gr.Row():
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
extract_button = gr.Button("Extract Database to Excel")
|
| 184 |
excel_output = gr.File(label="Download Excel File")
|
|
|
|
| 13 |
from langchain_community.llms import HuggingFaceHub
|
| 14 |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
| 15 |
from langchain_core.documents import Document
|
| 16 |
+
|
| 17 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
| 18 |
|
| 19 |
# Memory database to store question-answer pairs
|
| 20 |
memory_database = {}
|
| 21 |
+
conversation_history = []
|
| 22 |
|
| 23 |
def load_and_split_document_basic(file):
|
| 24 |
"""Loads and splits the document into pages."""
|
|
|
|
| 59 |
return "No cache to clear."
|
| 60 |
|
| 61 |
prompt = """
|
| 62 |
+
Answer the question based on the following context and conversation history:
|
| 63 |
+
Conversation History:
|
| 64 |
+
{history}
|
| 65 |
+
|
| 66 |
+
Context from documents:
|
| 67 |
{context}
|
| 68 |
+
|
| 69 |
Question: {question}
|
| 70 |
|
| 71 |
Provide a concise and direct answer to the question:
|
|
|
|
| 88 |
for i in range(max_chunks):
|
| 89 |
chunk = model(prompt + full_response, max_new_tokens=max_tokens)
|
| 90 |
chunk = chunk.strip()
|
|
|
|
| 91 |
if chunk.endswith((".", "!", "?")):
|
| 92 |
full_response += chunk
|
| 93 |
break
|
| 94 |
full_response += chunk
|
| 95 |
return full_response.strip()
|
| 96 |
|
| 97 |
+
def manage_conversation_history(question, answer, history, max_history=5):
|
| 98 |
+
history.append({"question": question, "answer": answer})
|
| 99 |
+
if len(history) > max_history:
|
| 100 |
+
history.pop(0)
|
| 101 |
+
return history
|
| 102 |
+
|
| 103 |
+
def ask_question(question, temperature, top_p, repetition_penalty):
|
| 104 |
+
global conversation_history
|
| 105 |
+
|
| 106 |
+
if not question:
|
| 107 |
+
return "Please enter a question."
|
| 108 |
+
|
| 109 |
+
if question in memory_database:
|
| 110 |
+
answer = memory_database[question]
|
| 111 |
+
else:
|
| 112 |
+
embed = get_embeddings()
|
| 113 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 114 |
+
model = get_model(temperature, top_p, repetition_penalty)
|
| 115 |
+
|
| 116 |
+
history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history])
|
| 117 |
+
prompt_val = ChatPromptTemplate.from_template(prompt)
|
| 118 |
+
retriever = database.as_retriever()
|
| 119 |
+
relevant_docs = retriever.get_relevant_documents(question)
|
| 120 |
+
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
| 121 |
+
formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question)
|
| 122 |
+
|
| 123 |
+
answer = generate_chunked_response(model, formatted_prompt)
|
| 124 |
+
answer = answer.split("Question:")[-1].strip()
|
| 125 |
+
|
| 126 |
+
memory_database[question] = answer
|
| 127 |
+
|
| 128 |
+
conversation_history = manage_conversation_history(question, answer, conversation_history)
|
| 129 |
+
|
| 130 |
+
return answer
|
| 131 |
|
| 132 |
def update_vectors(files, use_recursive_splitter):
|
| 133 |
if not files:
|
|
|
|
| 146 |
|
| 147 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
def extract_db_to_excel():
|
| 150 |
embed = get_embeddings()
|
| 151 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
|
|
|
| 162 |
|
| 163 |
def export_memory_db_to_excel():
|
| 164 |
data = [{"question": question, "answer": answer} for question, answer in memory_database.items()]
|
| 165 |
+
df_memory = pd.DataFrame(data)
|
| 166 |
+
|
| 167 |
+
data_history = [{"question": item["question"], "answer": item["answer"]} for item in conversation_history]
|
| 168 |
+
df_history = pd.DataFrame(data_history)
|
| 169 |
|
| 170 |
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
|
| 171 |
excel_path = tmp.name
|
| 172 |
+
with pd.ExcelWriter(excel_path, engine='openpyxl') as writer:
|
| 173 |
+
df_memory.to_excel(writer, sheet_name='Memory Database', index=False)
|
| 174 |
+
df_history.to_excel(writer, sheet_name='Conversation History', index=False)
|
| 175 |
|
| 176 |
return excel_path
|
| 177 |
|
|
|
|
| 188 |
update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output)
|
| 189 |
|
| 190 |
with gr.Row():
|
| 191 |
+
with gr.Column(scale=2):
|
| 192 |
+
chatbot = gr.Chatbot(label="Conversation")
|
| 193 |
+
question_input = gr.Textbox(label="Ask a question about your documents")
|
| 194 |
+
submit_button = gr.Button("Submit")
|
| 195 |
+
with gr.Column(scale=1):
|
| 196 |
+
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
|
| 197 |
+
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
|
| 198 |
+
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
|
| 199 |
+
|
| 200 |
+
def chat(question, history):
|
| 201 |
+
answer = ask_question(question, temperature_slider.value, top_p_slider.value, repetition_penalty_slider.value)
|
| 202 |
+
history.append((question, answer))
|
| 203 |
+
return "", history
|
| 204 |
+
|
| 205 |
+
submit_button.click(chat, inputs=[question_input, chatbot], outputs=[question_input, chatbot])
|
| 206 |
|
| 207 |
extract_button = gr.Button("Extract Database to Excel")
|
| 208 |
excel_output = gr.File(label="Download Excel File")
|