Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,130 +3,119 @@ import gradio as gr
|
|
| 3 |
from PyPDF2 import PdfReader
|
| 4 |
import requests
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
# Load environment variables
|
| 9 |
load_dotenv()
|
| 10 |
-
|
| 11 |
# Get the Hugging Face API token
|
| 12 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
| 13 |
-
|
| 14 |
# Initialize the tokenizer
|
| 15 |
-
tokenizer =
|
| 16 |
-
|
| 17 |
def count_tokens(text):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
try:
|
| 109 |
-
print(f"Starting summarization process for file: {pdf_file.name}")
|
| 110 |
-
summary = process_pdf(pdf_file.name, chunk_instructions, window_instructions, final_instructions)
|
| 111 |
-
print("Summarization process completed successfully")
|
| 112 |
-
return summary
|
| 113 |
-
except Exception as e:
|
| 114 |
-
print(f"An error occurred: {str(e)}")
|
| 115 |
-
return f"An error occurred: {str(e)}"
|
| 116 |
-
|
| 117 |
# Gradio interface
|
| 118 |
iface = gr.Interface(
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
)
|
| 130 |
-
|
| 131 |
print("Launching Gradio interface")
|
| 132 |
iface.launch()
|
|
|
|
| 3 |
from PyPDF2 import PdfReader
|
| 4 |
import requests
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
+
from transformers import AutoTokenizer
|
|
|
|
| 7 |
# Load environment variables
|
| 8 |
load_dotenv()
|
|
|
|
| 9 |
# Get the Hugging Face API token
|
| 10 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
| 11 |
# Initialize the tokenizer
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
|
|
|
| 13 |
def count_tokens(text):
|
| 14 |
+
return len(tokenizer.encode(text))
|
| 15 |
+
def summarize_text(text, instructions, agent_name, max_length, temperature, repetition_penalty, top_p):
|
| 16 |
+
print(f"{agent_name}: Starting summarization")
|
| 17 |
+
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
|
| 18 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACE_TOKEN}"}
|
| 19 |
+
summaries = []
|
| 20 |
+
current_text = text
|
| 21 |
+
while len(current_text) > 0:
|
| 22 |
+
payload = {
|
| 23 |
+
"inputs": f"{instructions}\n\nText to summarize:\n{current_text}",
|
| 24 |
+
"parameters": {
|
| 25 |
+
"max_length": max_length,
|
| 26 |
+
"temperature": temperature,
|
| 27 |
+
"repetition_penalty": repetition_penalty,
|
| 28 |
+
"top_p": top_p
|
| 29 |
+
}
|
| 30 |
+
}
|
| 31 |
+
print(f"{agent_name}: Sending request to API")
|
| 32 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 33 |
+
print(f"{agent_name}: Received response from API")
|
| 34 |
+
generated_text = response.json()[0]["generated_text"]
|
| 35 |
+
# Split the generated text by the delimiter "\n\n" and take the last part as the summary
|
| 36 |
+
summary = generated_text.split("\n\n")[-1]
|
| 37 |
+
summaries.append(summary)
|
| 38 |
+
# Remove the summarized part from the current text
|
| 39 |
+
current_text = current_text[len(summary):].strip()
|
| 40 |
+
# Join all partial summaries into a final summary
|
| 41 |
+
final_summary = "\n\n".join(summaries)
|
| 42 |
+
return final_summary
|
| 43 |
+
def process_pdf(pdf_file, chunk_instructions, window_instructions, final_instructions, max_length, temperature, repetition_penalty, top_p):
|
| 44 |
+
print("Starting PDF processing")
|
| 45 |
+
# Read PDF
|
| 46 |
+
reader = PdfReader(pdf_file)
|
| 47 |
+
text = ""
|
| 48 |
+
for page in reader.pages:
|
| 49 |
+
text += page.extract_text() + "\n\n"
|
| 50 |
+
print(f"Extracted {len(reader.pages)} pages from PDF")
|
| 51 |
+
# Chunk the text (simple splitting by pages for this example)
|
| 52 |
+
chunks = text.split("\n\n")
|
| 53 |
+
print(f"Split text into {len(chunks)} chunks")
|
| 54 |
+
# Agent 1: Summarize each chunk
|
| 55 |
+
agent1_summaries = []
|
| 56 |
+
for i, chunk in enumerate(chunks):
|
| 57 |
+
print(f"Agent 1: Processing chunk {i+1}/{len(chunks)}")
|
| 58 |
+
summary = summarize_text(chunk, chunk_instructions, "Agent 1", max_length, temperature, repetition_penalty, top_p)
|
| 59 |
+
agent1_summaries.append(summary)
|
| 60 |
+
print("Agent 1: Finished processing all chunks")
|
| 61 |
+
# Concatenate Agent 1 summaries
|
| 62 |
+
concatenated_summary = "\n\n".join(agent1_summaries)
|
| 63 |
+
print(f"Concatenated Agent 1 summaries (length: {count_tokens(concatenated_summary)} tokens)")
|
| 64 |
+
print(f"Concatenated Summary: {concatenated_summary}")
|
| 65 |
+
# Sliding window approach
|
| 66 |
+
window_size = 3500 # in tokens
|
| 67 |
+
step_size = 3000 # overlap of 500 tokens
|
| 68 |
+
windows = []
|
| 69 |
+
current_position = 0
|
| 70 |
+
while current_position < len(concatenated_summary):
|
| 71 |
+
window_end = current_position
|
| 72 |
+
window_text = ""
|
| 73 |
+
while count_tokens(window_text) < window_size and window_end < len(concatenated_summary):
|
| 74 |
+
window_text += concatenated_summary[window_end]
|
| 75 |
+
window_end += 1
|
| 76 |
+
windows.append(window_text)
|
| 77 |
+
current_position += step_size
|
| 78 |
+
print(f"Created {len(windows)} windows for intermediate summarization")
|
| 79 |
+
# Intermediate summarization
|
| 80 |
+
intermediate_summaries = []
|
| 81 |
+
for i, window in enumerate(windows):
|
| 82 |
+
print(f"Processing window {i+1}/{len(windows)}")
|
| 83 |
+
summary = summarize_text(window, window_instructions, f"Window {i+1}", max_length, temperature, repetition_penalty, top_p)
|
| 84 |
+
intermediate_summaries.append(summary)
|
| 85 |
+
# Final summarization
|
| 86 |
+
final_input = "\n\n".join(intermediate_summaries)
|
| 87 |
+
print(f"Final input length: {count_tokens(final_input)} tokens")
|
| 88 |
+
final_summary = summarize_text(final_input, final_instructions, "Agent 2", max_length, temperature, repetition_penalty, top_p)
|
| 89 |
+
print("Agent 2: Finished final summarization")
|
| 90 |
+
return final_summary
|
| 91 |
+
def pdf_summarizer(pdf_file, chunk_instructions, window_instructions, final_instructions, max_length, temperature, repetition_penalty, top_p):
|
| 92 |
+
if pdf_file is None:
|
| 93 |
+
print("Error: No PDF file uploaded")
|
| 94 |
+
return "Please upload a PDF file."
|
| 95 |
+
try:
|
| 96 |
+
print(f"Starting summarization process for file: {pdf_file.name}")
|
| 97 |
+
summary = process_pdf(pdf_file.name, chunk_instructions, window_instructions, final_instructions, max_length, temperature, repetition_penalty, top_p)
|
| 98 |
+
print("Summarization process completed successfully")
|
| 99 |
+
return summary
|
| 100 |
+
except Exception as e:
|
| 101 |
+
print(f"An error occurred: {str(e)}")
|
| 102 |
+
return f"An error occurred: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
# Gradio interface
|
| 104 |
iface = gr.Interface(
|
| 105 |
+
fn=pdf_summarizer,
|
| 106 |
+
inputs=[
|
| 107 |
+
gr.File(label="Upload PDF"),
|
| 108 |
+
gr.Textbox(label="Chunk Instructions", placeholder="Instructions for summarizing each chunk"),
|
| 109 |
+
gr.Textbox(label="Window Instructions", placeholder="Instructions for summarizing each window"),
|
| 110 |
+
gr.Textbox(label="Final Instructions", placeholder="Instructions for final summarization"),
|
| 111 |
+
gr.Slider(label="Max Length", minimum=500, maximum=3500, step=100, value=2000),
|
| 112 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7),
|
| 113 |
+
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.1, value=1.1),
|
| 114 |
+
gr.Slider(label="Top P", minimum=0.1, maximum=1.0, step=0.1, value=0.9)
|
| 115 |
+
],
|
| 116 |
+
outputs=gr.Textbox(label="Summary"),
|
| 117 |
+
title="PDF Earnings Summary Generator",
|
| 118 |
+
description="Upload a PDF of an earnings summary or transcript to generate a concise summary."
|
| 119 |
)
|
|
|
|
| 120 |
print("Launching Gradio interface")
|
| 121 |
iface.launch()
|