Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import spaces
|
| 3 |
+
from typing import List
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline, ChatHuggingFace
|
| 6 |
+
from langchain_community.vectorstores import FAISS
|
| 7 |
+
from langchain_community.retrievers import BM25Retriever
|
| 8 |
+
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
| 9 |
+
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
| 10 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 11 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
| 12 |
+
from langchain.docstore.document import Document
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
model = HuggingFacePipeline.from_model_id(
|
| 16 |
+
model_id="HuggingFaceTB/SmolLM2-360M-Instruct",
|
| 17 |
+
task="text-generation",
|
| 18 |
+
device_map="auto",
|
| 19 |
+
pipeline_kwargs=dict(
|
| 20 |
+
max_new_tokens=512,
|
| 21 |
+
do_sample=False,
|
| 22 |
+
repetition_penalty=1.03,
|
| 23 |
+
return_full_text=False,
|
| 24 |
+
),
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
llm = ChatHuggingFace(llm=model)
|
| 28 |
+
|
| 29 |
+
def create_embeddings_model() -> HuggingFaceEmbeddings:
|
| 30 |
+
model_name = "BAAI/bge-m3"
|
| 31 |
+
model_kwargs = {
|
| 32 |
+
'device': 'cpu',
|
| 33 |
+
'trust_remote_code': True,
|
| 34 |
+
}
|
| 35 |
+
encode_kwargs = {'normalize_embeddings': True}
|
| 36 |
+
return HuggingFaceEmbeddings(
|
| 37 |
+
model_name=model_name,
|
| 38 |
+
model_kwargs=model_kwargs,
|
| 39 |
+
encode_kwargs=encode_kwargs,
|
| 40 |
+
show_progress=True
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
embeddings = create_embeddings_model()
|
| 44 |
+
|
| 45 |
+
def load_faiss_retriever(path: str) -> FAISS:
|
| 46 |
+
vector_store = FAISS.load_local(path, embeddings, allow_dangerous_deserialization=True)
|
| 47 |
+
return vector_store.as_retriever(search_kwargs={"k": 10})
|
| 48 |
+
|
| 49 |
+
def load_bm25_retriever(load_path: str) -> BM25Retriever:
|
| 50 |
+
with open(load_path, "r", encoding="utf-8") as f:
|
| 51 |
+
docs_json = json.load(f)
|
| 52 |
+
documents = [Document(page_content=doc["page_content"], metadata=doc["metadata"]) for doc in docs_json]
|
| 53 |
+
return BM25Retriever.from_documents(documents, language="english")
|
| 54 |
+
|
| 55 |
+
class EmbeddingBM25RerankerRetriever:
|
| 56 |
+
def __init__(self, vector_retriever, bm25_retriever, reranker):
|
| 57 |
+
self.vector_retriever = vector_retriever
|
| 58 |
+
self.bm25_retriever = bm25_retriever
|
| 59 |
+
self.reranker = reranker
|
| 60 |
+
|
| 61 |
+
def invoke(self, query: str):
|
| 62 |
+
vector_docs = self.vector_retriever.invoke(query)
|
| 63 |
+
bm25_docs = self.bm25_retriever.invoke(query)
|
| 64 |
+
combined_docs = vector_docs + [doc for doc in bm25_docs if doc not in vector_docs]
|
| 65 |
+
return self.reranker.compress_documents(combined_docs, query)
|
| 66 |
+
|
| 67 |
+
faiss_path = "VectorDB/faiss_index"
|
| 68 |
+
bm25_path = "VectorDB/bm25_index.json"
|
| 69 |
+
|
| 70 |
+
faiss_retriever = load_faiss_retriever(faiss_path)
|
| 71 |
+
bm25_retriever = load_bm25_retriever(bm25_path)
|
| 72 |
+
reranker_model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-v2-m3")
|
| 73 |
+
reranker = CrossEncoderReranker(top_n=4, model=reranker_model)
|
| 74 |
+
retriever = EmbeddingBM25RerankerRetriever(faiss_retriever, bm25_retriever, reranker)
|
| 75 |
+
|
| 76 |
+
qa_prompt = ChatPromptTemplate.from_messages([
|
| 77 |
+
("system", """You are an AI research assistant specializing in Autism research, powered by a retrieval system of curated PubMed documents.
|
| 78 |
+
|
| 79 |
+
Response Guidelines:
|
| 80 |
+
- Provide precise, evidence-based answers drawing directly from retrieved medical research
|
| 81 |
+
- Synthesize information from multiple documents when possible
|
| 82 |
+
- Clearly distinguish between established findings and emerging research
|
| 83 |
+
- Maintain scientific rigor and objectivity
|
| 84 |
+
|
| 85 |
+
Query Handling:
|
| 86 |
+
- Prioritize direct, informative responses
|
| 87 |
+
- When document evidence is incomplete, explain the current state of research
|
| 88 |
+
- Highlight areas where more research is needed
|
| 89 |
+
- Never introduce speculation or unsupported claims
|
| 90 |
+
|
| 91 |
+
Contextual Integrity:
|
| 92 |
+
- Ensure all statements are traceable to specific research documents
|
| 93 |
+
- Preserve the nuance and complexity of scientific findings
|
| 94 |
+
- Communicate with clarity, avoiding unnecessary medical jargon
|
| 95 |
+
|
| 96 |
+
Knowledge Limitations:
|
| 97 |
+
- If no relevant information is found, state: "Current research documents do not provide a comprehensive answer to this specific query."
|
| 98 |
+
"""),
|
| 99 |
+
MessagesPlaceholder("chat_history"),
|
| 100 |
+
("human", "Context:\n{context}\n\nQuestion: {input}")
|
| 101 |
+
])
|
| 102 |
+
|
| 103 |
+
def format_context(docs) -> str:
|
| 104 |
+
return "\n\n".join([f"Doc {i+1}: {doc.page_content}" for i, doc in enumerate(docs)])
|
| 105 |
+
|
| 106 |
+
@spaces.GPU
|
| 107 |
+
def chat_with_rag(query: str, history: List[tuple[str, str]]) -> str:
|
| 108 |
+
chat_history = []
|
| 109 |
+
for human, ai in history:
|
| 110 |
+
chat_history.append(HumanMessage(content=human))
|
| 111 |
+
chat_history.append(AIMessage(content=ai))
|
| 112 |
+
|
| 113 |
+
docs = retriever.invoke(query)
|
| 114 |
+
context = format_context(docs)
|
| 115 |
+
|
| 116 |
+
prompt_input = {
|
| 117 |
+
"chat_history": chat_history,
|
| 118 |
+
"context": context,
|
| 119 |
+
"input": query
|
| 120 |
+
}
|
| 121 |
+
prompt = qa_prompt.format(**prompt_input)
|
| 122 |
+
|
| 123 |
+
response = llm.invoke(prompt)
|
| 124 |
+
return response.content
|
| 125 |
+
|
| 126 |
+
chat_interface = gr.ChatInterface(
|
| 127 |
+
fn=chat_with_rag,
|
| 128 |
+
title="Autism RAG Chatbot",
|
| 129 |
+
description="Ask questions about Autism.",
|
| 130 |
+
examples=["What causes Autism?", "How is Autism treated?", "What is Autism"],
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
if __name__ == "__main__":
|
| 134 |
+
chat_interface.launch(share=True)
|