Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,47 +3,81 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
3 |
from peft import PeftModel
|
4 |
import gradio as gr
|
5 |
|
6 |
-
#
|
7 |
BASE_MODEL_NAME = "microsoft/phi-2"
|
8 |
-
ADAPTER_REPO = "Shriti09/Microsoft-Phi-QLora"
|
9 |
|
10 |
-
# Load
|
11 |
print("Loading tokenizer...")
|
12 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME)
|
13 |
tokenizer.pad_token = tokenizer.eos_token
|
14 |
|
15 |
-
# Load the base model
|
16 |
print("Loading base model...")
|
17 |
-
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_NAME, device_map="auto")
|
18 |
|
19 |
-
# Load adapter weights
|
20 |
print("Loading LoRA adapter...")
|
21 |
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
|
22 |
|
23 |
-
# Merge adapter into base model
|
24 |
model = model.merge_and_unload()
|
25 |
-
|
26 |
-
# Put model in eval mode
|
27 |
model.eval()
|
28 |
|
29 |
-
# Function to generate
|
30 |
-
def generate_response(
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
outputs = model.generate(
|
33 |
**inputs,
|
34 |
-
max_length=
|
35 |
do_sample=True,
|
36 |
-
|
37 |
-
|
|
|
38 |
)
|
|
|
|
|
39 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
-
return response
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from peft import PeftModel
|
4 |
import gradio as gr
|
5 |
|
6 |
+
# Model Names
|
7 |
BASE_MODEL_NAME = "microsoft/phi-2"
|
8 |
+
ADAPTER_REPO = "Shriti09/Microsoft-Phi-QLora"
|
9 |
|
10 |
+
# Load tokenizer and model
|
11 |
print("Loading tokenizer...")
|
12 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME)
|
13 |
tokenizer.pad_token = tokenizer.eos_token
|
14 |
|
|
|
15 |
print("Loading base model...")
|
16 |
+
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_NAME, device_map="auto", torch_dtype=torch.float16)
|
17 |
|
|
|
18 |
print("Loading LoRA adapter...")
|
19 |
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
|
20 |
|
21 |
+
# Merge adapter into the base model
|
22 |
model = model.merge_and_unload()
|
|
|
|
|
23 |
model.eval()
|
24 |
|
25 |
+
# Function to generate responses
|
26 |
+
def generate_response(message, chat_history, temperature, top_p, max_tokens):
|
27 |
+
# Combine history with the new message
|
28 |
+
full_prompt = ""
|
29 |
+
for user_msg, bot_msg in chat_history:
|
30 |
+
full_prompt += f"User: {user_msg}\nAI: {bot_msg}\n"
|
31 |
+
full_prompt += f"User: {message}\nAI:"
|
32 |
+
|
33 |
+
# Tokenize and generate
|
34 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
35 |
outputs = model.generate(
|
36 |
**inputs,
|
37 |
+
max_length=len(inputs["input_ids"][0]) + max_tokens,
|
38 |
do_sample=True,
|
39 |
+
temperature=temperature,
|
40 |
+
top_p=top_p,
|
41 |
+
pad_token_id=tokenizer.eos_token_id
|
42 |
)
|
43 |
+
|
44 |
+
# Decode and extract the AI response
|
45 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
+
# Only return the new part of the response
|
47 |
+
response = response.split("AI:")[-1].strip()
|
48 |
+
|
49 |
+
# Update history
|
50 |
+
chat_history.append((message, response))
|
51 |
+
return chat_history, chat_history
|
52 |
+
|
53 |
+
# Gradio UI with Blocks
|
54 |
+
with gr.Blocks() as demo:
|
55 |
+
gr.Markdown("<h1><center>🤖 Phi-2 QLoRA Chatbot</center></h1>")
|
56 |
+
gr.Markdown("Chat with Microsoft Phi-2 fine-tuned using QLoRA adapters!")
|
57 |
+
|
58 |
+
chatbot = gr.Chatbot()
|
59 |
+
msg = gr.Textbox(placeholder="Ask me something...", label="Your Message")
|
60 |
+
clear = gr.Button("🗑️ Clear Chat")
|
61 |
+
|
62 |
+
# Add sliders for controlling generation behavior
|
63 |
+
with gr.Row():
|
64 |
+
temp_slider = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature")
|
65 |
+
top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)")
|
66 |
+
max_tokens_slider = gr.Slider(64, 1024, value=256, step=64, label="Max Tokens")
|
67 |
+
|
68 |
+
# State to hold chat history
|
69 |
+
state = gr.State([])
|
70 |
+
|
71 |
+
# On send message
|
72 |
+
def on_message(message, history, temperature, top_p, max_tokens):
|
73 |
+
return generate_response(message, history, temperature, top_p, max_tokens)
|
74 |
+
|
75 |
+
# Button actions
|
76 |
+
msg.submit(on_message,
|
77 |
+
[msg, state, temp_slider, top_p_slider, max_tokens_slider],
|
78 |
+
[chatbot, state])
|
79 |
+
|
80 |
+
clear.click(lambda: ([], []), None, [chatbot, state])
|
81 |
+
|
82 |
+
# Launch the Gradio app
|
83 |
+
demo.launch()
|