Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,15 +2,27 @@ import torch
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer
|
4 |
from model_smol2 import LlamaForCausalLM, config_model
|
5 |
-
|
6 |
# Instantiate the model
|
7 |
model = LlamaForCausalLM(config_model)
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Load tokenizer (replace with the appropriate tokenizer if you're using a custom one)
|
16 |
# Load the tokenizer
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer
|
4 |
from model_smol2 import LlamaForCausalLM, config_model
|
5 |
+
import requests
|
6 |
# Instantiate the model
|
7 |
model = LlamaForCausalLM(config_model)
|
8 |
|
9 |
+
# Correct URL for Google Drive direct download
|
10 |
+
url = "https://drive.google.com/uc?id=1tyZhudOcZRMaSLkzAWksVyQmbPQ0fi50"
|
11 |
+
|
12 |
+
response = requests.get(url)
|
13 |
+
if response.status_code == 200:
|
14 |
+
with open("final_checkpoint.pt", "wb") as f:
|
15 |
+
f.write(response.content)
|
16 |
+
else:
|
17 |
+
print(f"Failed to download the file. Status code: {response.status_code}")
|
18 |
+
|
19 |
+
# Now load the checkpoint
|
20 |
+
try:
|
21 |
+
checkpoint = torch.load("final_checkpoint.pt", map_location="cpu", weights_only=True)
|
22 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
23 |
+
model.eval()
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error loading checkpoint: {e}")
|
26 |
|
27 |
# Load tokenizer (replace with the appropriate tokenizer if you're using a custom one)
|
28 |
# Load the tokenizer
|