# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import sys import unittest import numpy as np import torch from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel from diffusers import ( FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3Img2ImgPipeline, StableDiffusion3Pipeline, ) from diffusers.utils import load_image from diffusers.utils.import_utils import is_accelerate_available from diffusers.utils.testing_utils import ( is_peft_available, numpy_cosine_similarity_distance, require_peft_backend, require_torch_gpu, torch_device, ) if is_peft_available(): pass sys.path.append(".") from utils import PeftLoraLoaderMixinTests # noqa: E402 if is_accelerate_available(): from accelerate.utils import release_memory @require_peft_backend class SD3LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): pipeline_class = StableDiffusion3Pipeline scheduler_cls = FlowMatchEulerDiscreteScheduler scheduler_kwargs = {} scheduler_classes = [FlowMatchEulerDiscreteScheduler] transformer_kwargs = { "sample_size": 32, "patch_size": 1, "in_channels": 4, "num_layers": 1, "attention_head_dim": 8, "num_attention_heads": 4, "caption_projection_dim": 32, "joint_attention_dim": 32, "pooled_projection_dim": 64, "out_channels": 4, } transformer_cls = SD3Transformer2DModel vae_kwargs = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "block_out_channels": (4,), "layers_per_block": 1, "latent_channels": 4, "norm_num_groups": 1, "use_quant_conv": False, "use_post_quant_conv": False, "shift_factor": 0.0609, "scaling_factor": 1.5035, } has_three_text_encoders = True tokenizer_cls, tokenizer_id = CLIPTokenizer, "hf-internal-testing/tiny-random-clip" tokenizer_2_cls, tokenizer_2_id = CLIPTokenizer, "hf-internal-testing/tiny-random-clip" tokenizer_3_cls, tokenizer_3_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" text_encoder_cls, text_encoder_id = CLIPTextModelWithProjection, "hf-internal-testing/tiny-sd3-text_encoder" text_encoder_2_cls, text_encoder_2_id = CLIPTextModelWithProjection, "hf-internal-testing/tiny-sd3-text_encoder-2" text_encoder_3_cls, text_encoder_3_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" @property def output_shape(self): return (1, 32, 32, 3) @require_torch_gpu def test_sd3_lora(self): """ Test loading the loras that are saved with the diffusers and peft formats. Related PR: https://github.com/huggingface/diffusers/pull/8584 """ components = self.get_dummy_components() pipe = self.pipeline_class(**components[0]) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) lora_model_id = "hf-internal-testing/tiny-sd3-loras" lora_filename = "lora_diffusers_format.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) pipe.unload_lora_weights() lora_filename = "lora_peft_format.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) @unittest.skip("Not supported in SD3.") def test_simple_inference_with_text_denoiser_block_scale(self): pass @unittest.skip("Not supported in SD3.") def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self): pass @unittest.skip("Not supported in SD3.") def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): pass @unittest.skip("Not supported in SD3.") def test_modify_padding_mode(self): pass @require_torch_gpu @require_peft_backend class LoraSD3IntegrationTests(unittest.TestCase): pipeline_class = StableDiffusion3Img2ImgPipeline repo_id = "stabilityai/stable-diffusion-3-medium-diffusers" def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, seed=0): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) return { "prompt": "corgi", "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "np", "generator": generator, "image": init_image, } def test_sd3_img2img_lora(self): pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.float16) pipe.load_lora_weights("zwloong/sd3-lora-training-rank16-v2", weight_name="pytorch_lora_weights.safetensors") pipe.enable_sequential_cpu_offload() inputs = self.get_inputs(torch_device) image = pipe(**inputs).images[0] image_slice = image[0, -3:, -3:] expected_slice = np.array([0.5396, 0.5776, 0.7432, 0.5151, 0.5586, 0.7383, 0.5537, 0.5933, 0.7153]) max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) assert max_diff < 1e-4, f"Outputs are not close enough, got {max_diff}" pipe.unload_lora_weights() release_memory(pipe)