import os import streamlit as st # from transformers import pipeline from PIL import Image # pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") st.title("Helmet Detection App: ⛑") confidence=st.slider("Confidence score (0-0.9)", min_value=0.0, max_value=.9, value=.5, step=.1) file_name = st.file_uploader("Upload an image where workers may or may not wear helmets.") if file_name is not None: col1, col2 = st.columns(2) image = Image.open(file_name) image.save("data/inputImg.jpg") col1.image(image, use_column_width=True) os.system(f"cd yolov5/ && python detect.py --weights ../best.pt --img 416 --conf {confidence} --source ../data/inputImg.jpg") im = Image.open("yolov5/runs/detect/exp/inputImg.jpg") im.save("data/output.jpg") im.close() output =Image.open("data/output.jpg") os.system("rm -rf yolov5/runs") col2.image(output, use_column_width=True) image.close() output.close()