Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
4 |
+
import re
|
5 |
+
import nltk
|
6 |
+
from nltk.tokenize import word_tokenize
|
7 |
+
from nltk.corpus import stopwords
|
8 |
+
from nltk.stem import WordNetLemmatizer
|
9 |
+
|
10 |
+
# NLTK setup
|
11 |
+
nltk.download('punkt')
|
12 |
+
nltk.download('stopwords')
|
13 |
+
nltk.download('wordnet')
|
14 |
+
|
15 |
+
stop_words = set(stopwords.words('english'))
|
16 |
+
lemmatizer = WordNetLemmatizer()
|
17 |
+
|
18 |
+
# Load model & tokenizer
|
19 |
+
model_dir = "./model"
|
20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
|
22 |
+
tokenizer = BertTokenizer.from_pretrained(model_dir)
|
23 |
+
model = BertForSequenceClassification.from_pretrained(model_dir).to(device)
|
24 |
+
model.eval()
|
25 |
+
|
26 |
+
MBTI_CLASSES = [
|
27 |
+
"ISTJ", "ISFJ", "INFJ", "INTJ",
|
28 |
+
"ISTP", "ISFP", "INFP", "INTP",
|
29 |
+
"ESTP", "ESFP", "ENFP", "ENTP",
|
30 |
+
"ESTJ", "ESFJ", "ENFJ", "ENTJ"
|
31 |
+
]
|
32 |
+
|
33 |
+
def preprocess(text):
|
34 |
+
text = text.lower()
|
35 |
+
text = re.sub(r"http\S+|www.\S+", "", text)
|
36 |
+
text = re.sub(r"[^a-zA-Z\s]", "", text)
|
37 |
+
text = text.replace("|||", " ")
|
38 |
+
tokens = word_tokenize(text)
|
39 |
+
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words]
|
40 |
+
return " ".join(tokens)
|
41 |
+
|
42 |
+
def predict_mbti(passage):
|
43 |
+
if not passage.strip():
|
44 |
+
return "Please enter your text."
|
45 |
+
|
46 |
+
cleaned = preprocess(passage)
|
47 |
+
inputs = tokenizer(cleaned, return_tensors="pt", padding="max_length", truncation=True, max_length=512).to(device)
|
48 |
+
|
49 |
+
with torch.no_grad():
|
50 |
+
outputs = model(**inputs)
|
51 |
+
pred = torch.argmax(outputs.logits, dim=1).item()
|
52 |
+
|
53 |
+
return MBTI_CLASSES[pred]
|
54 |
+
|
55 |
+
# Gradio Interface
|
56 |
+
demo = gr.Interface(
|
57 |
+
fn=predict_mbti,
|
58 |
+
inputs=gr.Textbox(lines=10, label="Combined Response Passage", placeholder="Paste all question-answer text here..."),
|
59 |
+
outputs=gr.Textbox(label="Predicted MBTI Type"),
|
60 |
+
title="🔮 MBTI Personality Classifier API",
|
61 |
+
description="Pass a single combined text input (like 'Q1 A1 Q2 A2...') to get back the MBTI type."
|
62 |
+
)
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
demo.launch()
|