Spaces:
Sleeping
Sleeping
import torch | |
from transformers import BertTokenizer, BertForSequenceClassification | |
import gradio as gr | |
# Load model and tokenizer from local directory (same folder as app.py) | |
model = BertForSequenceClassification.from_pretrained("bert_expense_query_model_2", trust_remote_code = True) | |
tokenizer = BertTokenizer.from_pretrained("bert_expense_query_model_2") | |
# Ensure model runs on GPU if available | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
model.eval() | |
# ID to label mapping | |
id2label = {0: "Update", 1: "Analyse", 2: "Insert", 3: "Delete", 4: "Select"} | |
def classify_query(text): | |
if not text.strip(): | |
return "Please enter a valid query." | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128).to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
prediction = torch.argmax(outputs.logits, dim=1).item() | |
label = id2label.get(prediction, "Unknown") | |
return f"🧠 Predicted Query Type: **{label}**" | |
# Gradio UI | |
demo = gr.Interface( | |
fn=classify_query, | |
inputs=gr.Textbox(label="Enter your expense query", lines=2, placeholder="e.g., Show me all expenses from January."), | |
outputs=gr.Markdown(label="Query Type"), | |
title="💰 Expense Query Type Classifier", | |
description="This model classifies your natural language query into one of 5 SQL operation types: Select, Insert, Delete, Update, or Analyse.", | |
examples=[ | |
["Add an expense of 500 in groceries at Amazon"], | |
["Remove last transaction from Starbucks"], | |
["Update amount of food expense to 850"], | |
["Kitna kharcha hua electronics par?"], | |
["Give me analytics of travel spending"] | |
], | |
theme="soft", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |