Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
4 |
+
|
5 |
+
# Load model and tokenizer from local files
|
6 |
+
model_path = "./"
|
7 |
+
tokenizer = T5Tokenizer.from_pretrained(model_path)
|
8 |
+
model = T5ForConditionalGeneration.from_pretrained(model_path)
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
model = model.to(device)
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
def generate_sql(user_input):
|
14 |
+
inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True).to(device)
|
15 |
+
with torch.no_grad():
|
16 |
+
outputs = model.generate(**inputs, max_length=512)
|
17 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
18 |
+
|
19 |
+
gr.Interface(
|
20 |
+
fn=generate_sql,
|
21 |
+
inputs=gr.Textbox(lines=15, placeholder="Paste your full SQL prompt here..."),
|
22 |
+
outputs=gr.Textbox(label="Generated SQL Query"),
|
23 |
+
title="HISAB AI – Text2SQL Generator",
|
24 |
+
description="Paste your schema + user query + instructions. Model returns a PostgreSQL query."
|
25 |
+
).launch()
|