import gradio as gr import torch from transformers import T5Tokenizer, T5ForConditionalGeneration # Load model and tokenizer from local files model_path = "./" tokenizer = T5Tokenizer.from_pretrained(model_path) model = T5ForConditionalGeneration.from_pretrained(model_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) model.eval() def generate_sql(user_input): inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True).to(device) with torch.no_grad(): outputs = model.generate(**inputs, max_length=512) return tokenizer.decode(outputs[0], skip_special_tokens=True) gr.Interface( fn=generate_sql, inputs=gr.Textbox(lines=15, placeholder="Paste your full SQL prompt here..."), outputs=gr.Textbox(label="Generated SQL Query"), title="HISAB AI – Text2SQL Generator", description="Paste your schema + user query + instructions. Model returns a PostgreSQL query." ).launch()