Update app.py
Browse files
app.py
CHANGED
@@ -6,32 +6,15 @@ import gradio as gr
|
|
6 |
model_name = "defog/llama-3-sqlcoder-8b"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
if available_memory > 20e9:
|
17 |
-
return AutoModelForCausalLM.from_pretrained(
|
18 |
-
model_name,
|
19 |
-
trust_remote_code=True,
|
20 |
-
torch_dtype=torch.float16,
|
21 |
-
device_map="auto",
|
22 |
-
use_cache=True,
|
23 |
-
)
|
24 |
-
else:
|
25 |
-
return AutoModelForCausalLM.from_pretrained(
|
26 |
-
model_name,
|
27 |
-
trust_remote_code=True,
|
28 |
-
load_in_4bit=True,
|
29 |
-
device_map="auto",
|
30 |
-
use_cache=True,
|
31 |
-
)
|
32 |
-
|
33 |
-
model = get_model()
|
34 |
|
|
|
35 |
prompt = """<|begin_of_text|><|start_header_id|>user<|end_header_id|>
|
36 |
|
37 |
Generate a SQL query to answer this question: `{question}`
|
@@ -80,9 +63,10 @@ The following SQL query best answers the question `{question}`:
|
|
80 |
```sql
|
81 |
"""
|
82 |
|
|
|
83 |
def generate_query(question):
|
84 |
formatted_prompt = prompt.format(question=question)
|
85 |
-
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("
|
86 |
|
87 |
generated_ids = model.generate(
|
88 |
**inputs,
|
@@ -100,16 +84,16 @@ def generate_query(question):
|
|
100 |
try:
|
101 |
sql_code = output.split("```sql")[1].split("```")[0].strip()
|
102 |
return sqlparse.format(sql_code, reindent=True)
|
103 |
-
except:
|
104 |
-
return "SQL could not be parsed. Raw Output:\n\n" + output
|
105 |
|
106 |
-
# Gradio
|
107 |
iface = gr.Interface(
|
108 |
fn=generate_query,
|
109 |
-
inputs=gr.Textbox(lines=3, placeholder="
|
110 |
outputs="text",
|
111 |
-
title="LLaMA 3 SQLCoder
|
112 |
-
description="
|
113 |
)
|
114 |
|
115 |
if __name__ == "__main__":
|
|
|
6 |
model_name = "defog/llama-3-sqlcoder-8b"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
+
# Load model on CPU
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
model_name,
|
12 |
+
trust_remote_code=True,
|
13 |
+
device_map={"": "cpu"},
|
14 |
+
torch_dtype=torch.float32
|
15 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# SQL Prompt Template
|
18 |
prompt = """<|begin_of_text|><|start_header_id|>user<|end_header_id|>
|
19 |
|
20 |
Generate a SQL query to answer this question: `{question}`
|
|
|
63 |
```sql
|
64 |
"""
|
65 |
|
66 |
+
# Main function
|
67 |
def generate_query(question):
|
68 |
formatted_prompt = prompt.format(question=question)
|
69 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cpu")
|
70 |
|
71 |
generated_ids = model.generate(
|
72 |
**inputs,
|
|
|
84 |
try:
|
85 |
sql_code = output.split("```sql")[1].split("```")[0].strip()
|
86 |
return sqlparse.format(sql_code, reindent=True)
|
87 |
+
except Exception:
|
88 |
+
return "β SQL could not be parsed. Raw Output:\n\n" + output
|
89 |
|
90 |
+
# Gradio UI
|
91 |
iface = gr.Interface(
|
92 |
fn=generate_query,
|
93 |
+
inputs=gr.Textbox(lines=3, placeholder="Ask your SQL question..."),
|
94 |
outputs="text",
|
95 |
+
title="π¦ LLaMA 3 SQLCoder (CPU)",
|
96 |
+
description="Convert natural language into SQL queries based on the given schema. Running on CPU β may be slow.",
|
97 |
)
|
98 |
|
99 |
if __name__ == "__main__":
|