SidraTul's picture
Create app.py
92d4fbe verified
raw
history blame
1.48 kB
import streamlite as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
# Load chatbot model
chatbot_model = "microsoft/DialoGPT-medium"
tokenizer = AutoTokenizer.from_pretrained(chatbot_model)
model = AutoModelForCausalLM.from_pretrained(chatbot_model)
# Load emotion detection model
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
st.title("🧠 Mental Health Chatbot")
# Chat history
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
# User Input
user_input = st.text_input("You:", key="user_input")
if st.button("Send"):
if user_input:
# Generate chatbot response
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
# Detect emotion
emotion_result = emotion_pipeline(user_input)
emotion = emotion_result[0]["label"]
# Store chat history
st.session_state.chat_history.append(("You", user_input))
st.session_state.chat_history.append(("Bot", response))
# Display chat
for sender, msg in st.session_state.chat_history:
st.write(f"**{sender}:** {msg}")
# Display emotion
st.write(f"🧠 **Emotion Detected:** {emotion}")