SidraTul commited on
Commit
56226b9
Β·
verified Β·
1 Parent(s): f8fa7ea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -62
app.py CHANGED
@@ -1,86 +1,86 @@
1
- # import streamlit as st
2
- # from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
3
 
4
- # # Load chatbot model
5
- # chatbot_model = "microsoft/DialoGPT-medium"
6
- # tokenizer = AutoTokenizer.from_pretrained(chatbot_model)
7
- # model = AutoModelForCausalLM.from_pretrained(chatbot_model)
8
 
9
- # # Load emotion detection model
10
- # emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
11
 
12
- # st.title("🧠 Mental Health Chatbot")
13
 
14
- # # Chat history
15
- # if "chat_history" not in st.session_state:
16
- # st.session_state.chat_history = []
17
 
18
- # # User Input
19
- # user_input = st.text_input("You:", key="user_input")
20
 
21
- # if st.button("Send"):
22
- # if user_input:
23
- # # Generate chatbot response
24
- # input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
25
- # output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
26
- # response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
27
 
28
- # # Detect emotion
29
- # emotion_result = emotion_pipeline(user_input)
30
- # emotion = emotion_result[0]["label"]
31
 
32
- # # Store chat history
33
- # st.session_state.chat_history.append(("You", user_input))
34
- # st.session_state.chat_history.append(("Bot", response))
35
 
36
- # # Display chat
37
- # for sender, msg in st.session_state.chat_history:
38
- # st.write(f"**{sender}:** {msg}")
39
 
40
- # # Display emotion
41
- # st.write(f"🧠 **Emotion Detected:** {emotion}")
42
 
43
 
44
 
45
- import streamlit as st
46
- from transformers import pipeline, AutoTokenizer
47
 
48
- # βœ… Load Emotion Recognition Model
49
- emotion_pipeline = pipeline("text-classification", model="ahmettasdemir/distilbert-base-uncased-finetuned-emotion")
50
 
51
- # βœ… Load Stress Detection Model
52
- stress_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
53
 
54
- # βœ… Load Mental Disorder Detection Model
55
- mental_bert_pipeline = pipeline("text-classification", model="nlpconnect/vit-gpt2-image-captioning")
56
 
57
- # βœ… Load PHQ-9 Depression Severity Classifier
58
- phq9_pipeline = pipeline("text-classification", model="PHQ-9 Depression Classifier")
59
 
60
- # βœ… Load Chatbot Model (DeepSeek)
61
- deepseek_model = "deepseek-ai/deepseek-llm-7b"
62
- deepseek_tokenizer = AutoTokenizer.from_pretrained(deepseek_model)
63
- deepseek_pipeline = pipeline("text-generation", model=deepseek_model, tokenizer=deepseek_tokenizer)
64
 
65
- # πŸ₯ Streamlit UI
66
- st.title("🧠 Mental Health Assistant Bot")
67
 
68
- user_input = st.text_input("How are you feeling today?", "")
69
 
70
- if st.button("Submit"):
71
- if user_input:
72
- # βœ… Emotion Analysis
73
- emotion_result = emotion_pipeline(user_input)[0]
74
- st.write(f"**Emotion Detected:** {emotion_result['label']} ({emotion_result['score']:.2f})")
75
 
76
- # βœ… Stress Level Analysis
77
- stress_result = stress_pipeline(user_input)[0]
78
- st.write(f"**Stress Level:** {stress_result['label']} ({stress_result['score']:.2f})")
79
 
80
- # βœ… Mental Health Condition Detection
81
- mental_health_result = mental_bert_pipeline(user_input)[0]
82
- st.write(f"**Possible Mental Health Condition:** {mental_health_result['label']} ({mental_health_result['score']:.2f})")
83
 
84
- # βœ… AI Chatbot Response
85
- deepseek_response = deepseek_pipeline(user_input, max_length=100, do_sample=True)[0]['generated_text']
86
- st.write(f"πŸ€– **Chatbot:** {deepseek_response}")
 
1
+ import streamlit as st
2
+ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
3
 
4
+ # Load chatbot model
5
+ chatbot_model = "microsoft/DialoGPT-medium"
6
+ tokenizer = AutoTokenizer.from_pretrained(chatbot_model)
7
+ model = AutoModelForCausalLM.from_pretrained(chatbot_model)
8
 
9
+ # Load emotion detection model
10
+ emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
11
 
12
+ st.title("🧠 Mental Health Chatbot")
13
 
14
+ # Chat history
15
+ if "chat_history" not in st.session_state:
16
+ st.session_state.chat_history = []
17
 
18
+ # User Input
19
+ user_input = st.text_input("You:", key="user_input")
20
 
21
+ if st.button("Send"):
22
+ if user_input:
23
+ # Generate chatbot response
24
+ input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
25
+ output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
26
+ response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
27
 
28
+ # Detect emotion
29
+ emotion_result = emotion_pipeline(user_input)
30
+ emotion = emotion_result[0]["label"]
31
 
32
+ # Store chat history
33
+ st.session_state.chat_history.append(("You", user_input))
34
+ st.session_state.chat_history.append(("Bot", response))
35
 
36
+ # Display chat
37
+ for sender, msg in st.session_state.chat_history:
38
+ st.write(f"**{sender}:** {msg}")
39
 
40
+ # Display emotion
41
+ st.write(f"🧠 **Emotion Detected:** {emotion}")
42
 
43
 
44
 
45
+ # import streamlit as st
46
+ # from transformers import pipeline, AutoTokenizer
47
 
48
+ # # βœ… Load Emotion Recognition Model
49
+ # emotion_pipeline = pipeline("text-classification", model="ahmettasdemir/distilbert-base-uncased-finetuned-emotion")
50
 
51
+ # # βœ… Load Stress Detection Model
52
+ # stress_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
53
 
54
+ # # βœ… Load Mental Disorder Detection Model
55
+ # mental_bert_pipeline = pipeline("text-classification", model="nlpconnect/vit-gpt2-image-captioning")
56
 
57
+ # # βœ… Load PHQ-9 Depression Severity Classifier
58
+ # phq9_pipeline = pipeline("text-classification", model="PHQ-9 Depression Classifier")
59
 
60
+ # # βœ… Load Chatbot Model (DeepSeek)
61
+ # deepseek_model = "deepseek-ai/deepseek-llm-7b"
62
+ # deepseek_tokenizer = AutoTokenizer.from_pretrained(deepseek_model)
63
+ # deepseek_pipeline = pipeline("text-generation", model=deepseek_model, tokenizer=deepseek_tokenizer)
64
 
65
+ # # πŸ₯ Streamlit UI
66
+ # st.title("🧠 Mental Health Assistant Bot")
67
 
68
+ # user_input = st.text_input("How are you feeling today?", "")
69
 
70
+ # if st.button("Submit"):
71
+ # if user_input:
72
+ # # βœ… Emotion Analysis
73
+ # emotion_result = emotion_pipeline(user_input)[0]
74
+ # st.write(f"**Emotion Detected:** {emotion_result['label']} ({emotion_result['score']:.2f})")
75
 
76
+ # # βœ… Stress Level Analysis
77
+ # stress_result = stress_pipeline(user_input)[0]
78
+ # st.write(f"**Stress Level:** {stress_result['label']} ({stress_result['score']:.2f})")
79
 
80
+ # # βœ… Mental Health Condition Detection
81
+ # mental_health_result = mental_bert_pipeline(user_input)[0]
82
+ # st.write(f"**Possible Mental Health Condition:** {mental_health_result['label']} ({mental_health_result['score']:.2f})")
83
 
84
+ # # βœ… AI Chatbot Response
85
+ # deepseek_response = deepseek_pipeline(user_input, max_length=100, do_sample=True)[0]['generated_text']
86
+ # st.write(f"πŸ€– **Chatbot:** {deepseek_response}")