import streamlit as st from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer # Load chatbot model chatbot_model = "microsoft/DialoGPT-medium" tokenizer = AutoTokenizer.from_pretrained(chatbot_model) model = AutoModelForCausalLM.from_pretrained(chatbot_model) # Load emotion detection model emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base") st.title("🧠 Mental Health Chatbot") # Chat history if "chat_history" not in st.session_state: st.session_state.chat_history = [] # User Input user_input = st.text_input("You:", key="user_input") if st.button("Send"): if user_input: # Generate chatbot response input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt") output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True) # Detect emotion emotion_result = emotion_pipeline(user_input) emotion = emotion_result[0]["label"] # Store chat history st.session_state.chat_history.append(("You", user_input)) st.session_state.chat_history.append(("Bot", response)) # Display chat for sender, msg in st.session_state.chat_history: st.write(f"**{sender}:** {msg}") # Display emotion st.write(f"🧠 **Emotion Detected:** {emotion}")