Create utlis.py
Browse files
utlis.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
|
3 |
+
def load_checkpoint(model_checkpoint_dir='model.pt',config_dir='config.yaml'):
|
4 |
+
|
5 |
+
with open(config_dir, 'r') as yaml_file:
|
6 |
+
loaded_model_params = yaml.safe_load(yaml_file)
|
7 |
+
|
8 |
+
# Create a new instance of the model with the loaded configuration
|
9 |
+
model = Seq2SeqTransformer(
|
10 |
+
loaded_model_params["num_encoder_layers"],
|
11 |
+
loaded_model_params["num_decoder_layers"],
|
12 |
+
loaded_model_params["emb_size"],
|
13 |
+
loaded_model_params["nhead"],
|
14 |
+
loaded_model_params["source_vocab_size"],
|
15 |
+
loaded_model_params["target_vocab_size"],
|
16 |
+
loaded_model_params["ffn_hid_dim"]
|
17 |
+
)
|
18 |
+
|
19 |
+
checkpoint = torch.load(model_checkpoint_dir) if torch.cuda.is_available() else torch.load(model_checkpoint_dir,map_location=torch.device('cpu'))
|
20 |
+
model.load_state_dict(checkpoint)
|
21 |
+
|
22 |
+
return model
|
23 |
+
|
24 |
+
|
25 |
+
def greedy_decode(model, src, src_mask, max_len, start_symbol):
|
26 |
+
# Move inputs to the device
|
27 |
+
src = src.to(device)
|
28 |
+
src_mask = src_mask.to(device)
|
29 |
+
|
30 |
+
# Encode the source sequence
|
31 |
+
memory = model.encode(src, src_mask)
|
32 |
+
|
33 |
+
# Initialize the target sequence with the start symbol
|
34 |
+
ys = torch.tensor([[start_symbol]]).type(torch.long).to(device)
|
35 |
+
|
36 |
+
for i in range(max_len - 1):
|
37 |
+
memory = memory.to(device)
|
38 |
+
# Create a target mask for autoregressive decoding
|
39 |
+
tgt_mask = torch.tril(torch.full((ys.size(1), ys.size(1)), float('-inf'), device=device), diagonal=-1).transpose(0, 1).to(device)
|
40 |
+
# Decode the target sequence
|
41 |
+
out = model.decode(ys, memory, tgt_mask)
|
42 |
+
# Generate the probability distribution over the vocabulary
|
43 |
+
prob = model.generator(out[:, -1])
|
44 |
+
|
45 |
+
# Select the next word with the highest probability
|
46 |
+
_, next_word = torch.max(prob, dim=1)
|
47 |
+
next_word = next_word.item()
|
48 |
+
|
49 |
+
# Append the next word to the target sequence
|
50 |
+
ys = torch.cat([ys,
|
51 |
+
torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
|
52 |
+
|
53 |
+
# Check if the generated word is the end-of-sequence token
|
54 |
+
if next_word == target_tokenizer.eos_token_id:
|
55 |
+
break
|
56 |
+
|
57 |
+
return ys
|
58 |
+
|
59 |
+
|
60 |
+
def beam_search_decode(model, src, src_mask, max_len, start_symbol, beam_size ,length_penalty):
|
61 |
+
# Move inputs to the device
|
62 |
+
src = src.to(device)
|
63 |
+
src_mask = src_mask.to(device)
|
64 |
+
|
65 |
+
# Encode the source sequence
|
66 |
+
memory = model.encode(src, src_mask) # b * seqlen_src * hdim
|
67 |
+
|
68 |
+
# Initialize the beams (sequences, score)
|
69 |
+
beams = [(torch.tensor([[start_symbol]]).type(torch.long).to(device), 0)]
|
70 |
+
|
71 |
+
for i in range(max_len - 1):
|
72 |
+
new_beams = []
|
73 |
+
complete_beams = []
|
74 |
+
cbl = []
|
75 |
+
|
76 |
+
for ys, score in beams:
|
77 |
+
|
78 |
+
# Create a target mask for autoregressive decoding
|
79 |
+
tgt_mask = torch.tril(torch.full((ys.size(1), ys.size(1)), float('-inf'), device=device), diagonal=-1).transpose(0, 1).to(device)
|
80 |
+
# Decode the target sequence
|
81 |
+
out = model.decode(ys, memory, tgt_mask) # b * seqlen_tgt * hdim
|
82 |
+
#print(f'shape out {out.shape}')
|
83 |
+
# Generate the probability distribution over the vocabulary
|
84 |
+
prob = model.generator(out[:, -1]) # b * tgt_vocab_size
|
85 |
+
#print(f'shape prob {prob.shape}')
|
86 |
+
|
87 |
+
# Get the top beam_size candidates for the next word
|
88 |
+
_, top_indices = torch.topk(prob, beam_size, dim=1) # b * beam_size
|
89 |
+
|
90 |
+
for j,next_word in enumerate(top_indices[0]):
|
91 |
+
|
92 |
+
next_word = next_word.item()
|
93 |
+
|
94 |
+
# Append the next word to the target sequence
|
95 |
+
new_ys = torch.cat([ys, torch.full((1, 1), fill_value=next_word, dtype=src.dtype).to(device)], dim=1)
|
96 |
+
|
97 |
+
length_factor = (5 + j / 6) ** length_penalty
|
98 |
+
new_score = (score + prob[0][next_word].item()) / length_factor
|
99 |
+
|
100 |
+
if next_word == target_tokenizer.eos_token_id:
|
101 |
+
complete_beams.append((new_ys, new_score))
|
102 |
+
else:
|
103 |
+
new_beams.append((new_ys, new_score))
|
104 |
+
|
105 |
+
|
106 |
+
# Sort the beams by score and select the top beam_size beams
|
107 |
+
new_beams.sort(key=lambda x: x[1], reverse=True)
|
108 |
+
try:
|
109 |
+
beams = new_beams[:beam_size]
|
110 |
+
except:
|
111 |
+
beams = new_beams
|
112 |
+
|
113 |
+
beams = new_beams + complete_beams
|
114 |
+
beams.sort(key=lambda x: x[1], reverse=True)
|
115 |
+
|
116 |
+
best_beam = beams[0][0]
|
117 |
+
return best_beam
|
118 |
+
|
119 |
+
def translate(model: torch.nn.Module, strategy:str, src_sentence: str, lenght_extend :int = 0, beam_size: int = 5, raw: bool = False, length_penalty:float = 0.6):
|
120 |
+
assert strategy in ['greedy','beam search'], 'the strategy for decoding has to be either greedy or beam search'
|
121 |
+
model.to(device)
|
122 |
+
model.eval()
|
123 |
+
# Tokenize the source sentence
|
124 |
+
src = source_tokenizer(src_sentence, **token_config)['input_ids']
|
125 |
+
num_tokens = src.shape[1]
|
126 |
+
# Create a source mask
|
127 |
+
src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool)
|
128 |
+
if strategy == 'greedy':
|
129 |
+
tgt_tokens = greedy_decode(model, src, src_mask, max_len=num_tokens + 5, start_symbol=target_tokenizer.bos_token_id).flatten()
|
130 |
+
# Generate the target tokens using beam search decoding
|
131 |
+
else:
|
132 |
+
tgt_tokens = beam_search_decode(model, src, src_mask, max_len=num_tokens + lenght_extend, start_symbol=target_tokenizer.bos_token_id, beam_size=beam_size,length_penalty=length_penalty).flatten()
|
133 |
+
# Decode the target tokens and clean up the result
|
134 |
+
return target_tokenizer.decode(tgt_tokens, clean_up_tokenization_spaces=True, skip_special_tokens=True)
|