import gradio as gr import numpy as np import torch from PIL import Image from diffusers import StableDiffusionPipeline model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id).to('cpu') def infer(prompt, negative, steps, scale, seed): generator = torch.Generator(device='cpu').manual_seed(seed) img = pipe( prompt, height=512, width=512, num_inference_steps=steps, guidance_scale=scale, negative_prompt = negative, generator=generator, ).images return img block = gr.Blocks() with block: with gr.Group(): with gr.Box(): with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): with gr.Column(): text = gr.Textbox( label="Enter your prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", ).style( border=(True, False, True, True), rounded=(True, False, False, True), container=False, ) negative = gr.Textbox( label="Enter your negative prompt", show_label=False, placeholder="Enter a negative prompt", elem_id="negative-prompt-text-input", ).style( border=(True, False, True, True), rounded=(True, False, False, True),container=False, ) btn = gr.Button("Generate image").style( margin=False, rounded=(False, True, True, False), ) gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(columns=(1, 2), height="auto") with gr.Row(elem_id="advanced-options"): samples = gr.Slider(label="Images", minimum=1, maximum=1, value=1, step=1, interactive=False) steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=12, step=1, interactive=True) scale = gr.Slider(label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1, interactive=True) seed = gr.Slider(label="Random seed",minimum=0,maximum=2147483647,step=1,randomize=True,interactive=True) btn.click(infer, inputs=[text, negative, steps, scale, seed], outputs=[gallery]) block.launch(show_api=False)