SimFG
First commit
c35b520
raw
history blame
2.93 kB
from typing import Callable, Optional
import gradio as gr
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Zilliz
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.llms import OpenAI
chain: Optional[Callable] = None
def web_loader(url_list, openai_key, zilliz_uri, user, password):
if not url_list:
return "please enter url list"
loader = WebBaseLoader(url_list.split())
docs = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=0)
docs = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings(model="ada", openai_api_key=openai_key)
docsearch = Zilliz.from_documents(
docs,
embedding=embeddings,
connection_args={
"uri": zilliz_uri,
"user": user,
"password": password,
"secure": True,
},
)
global chain
chain = RetrievalQAWithSourcesChain.from_chain_type(
OpenAI(temperature=0, openai_api_key=openai_key),
chain_type="map_reduce",
retriever=docsearch.as_retriever(),
)
return "success to load data"
def query(question):
global chain
# "What is milvus?"
if not chain:
return "please load the data first"
return chain(inputs={"question": question}, return_only_outputs=True).get(
"answer", "fail to get answer"
)
if __name__ == "__main__":
block = gr.Blocks()
with block as demo:
gr.Markdown("<h1><center>Langchain And Zilliz Cloud Demo</center></h1>")
url_list_text = gr.Textbox(
label="Url list",
lines=3,
)
openai_key_text = gr.Textbox(label="openai api key")
with gr.Row():
zilliz_uri_text = gr.Textbox(label="zilliz cloud uri")
user_text = gr.Textbox(label="user")
password_text = gr.Textbox(label="password", type="password")
loader_output = gr.Textbox(label="Load Status")
loader_btn = gr.Button("WebLoader")
loader_btn.click(
fn=web_loader,
inputs=[
url_list_text,
openai_key_text,
zilliz_uri_text,
user_text,
password_text,
],
outputs=loader_output,
api_name="web_load",
)
question_text = gr.Textbox(
label="question",
lines=3,
)
query_output = gr.Textbox(label="question answer", lines=3)
query_btn = gr.Button("Generate")
query_btn.click(
fn=query,
inputs=[question_text],
outputs=query_output,
api_name="generate_answer",
)
demo.queue().launch(server_name="0.0.0.0", share=False)