Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import streamlit as st | |
| import torch | |
| import tempfile | |
| import os | |
| from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
| from datasets import load_dataset | |
| # Configuration de l'interface Streamlit | |
| st.title("🔊 Transcription Audio avec Whisper Fine-tuné") | |
| st.write("Upload un fichier audio et laisse ton modèle fine-tuné faire le travail !") | |
| # 🔹 Charger le modèle fine-tuné et le processeur | |
| def load_model(): | |
| model_name = "SimpleFrog/whisper_finetuned" # Remplace par ton nom de repo sur Hugging Face | |
| processor = WhisperProcessor.from_pretrained(model_name) | |
| model = WhisperForConditionalGeneration.from_pretrained(model_name) | |
| model.eval() # Mode évaluation | |
| return processor, model | |
| processor, model = load_model() | |
| # 🔹 Upload d'un fichier audio | |
| uploaded_file = st.file_uploader("Upload un fichier audio", type=["mp3", "wav", "m4a"]) | |
| if uploaded_file is not None: | |
| # Sauvegarder temporairement l'audio | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio: | |
| temp_audio.write(uploaded_file.read()) | |
| temp_audio_path = temp_audio.name | |
| # Charger et traiter l'audio | |
| st.write("📄 **Transcription en cours...**") | |
| audio_input = processor(temp_audio_path, return_tensors="pt", sampling_rate=16000) | |
| input_features = audio_input.input_features | |
| # Générer la transcription | |
| with torch.no_grad(): | |
| predicted_ids = model.generate(input_features) | |
| # Décoder la sortie | |
| transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
| # Afficher la transcription | |
| st.subheader("📝 Transcription :") | |
| st.text_area("", transcription, height=200) | |
| # Supprimer le fichier temporaire après l'affichage | |
| os.remove(temp_audio_path) | |
| st.write("🔹 Modèle fine-tuné utilisé :", "SimpleFrog/whisper_finetuned") | |