File size: 10,666 Bytes
6fe7180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import math
from typing import List, Tuple

import nltk
import numpy as np
import seaborn as sns

from rsasumm.rsa_reranker import RSAReranking
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt

MODEL = "facebook/bart-large-cnn"

model = AutoModelForSeq2SeqLM.from_pretrained(MODEL)
tokenizer = AutoTokenizer.from_pretrained(MODEL)


latex_template = r"""

    \begin{subfigure}[b]{0.48\textwidth}

        \resizebox{\textwidth}{!}{

            \begin{coloredbox}{darkgray}{Review 1}

            [REVIEW 1]

            

\end{coloredbox}}

    \end{subfigure}

        \begin{subfigure}[b]{0.48\textwidth}

        \resizebox{\textwidth}{!}{

        \begin{coloredbox}{darkgray}{Review 2}

        [REVIEW 2]

\end{coloredbox}}

    \end{subfigure}

        \begin{subfigure}[b]{0.48\textwidth}

        \resizebox{\textwidth}{!}{

        \begin{coloredbox}{darkgray}{Review 3}

        [REVIEW 3]

\end{coloredbox}}

    \end{subfigure}

    """

EXAMPLES = [
    "The paper gives really interesting insights on the topic of transfer learning. It is well presented and the experiment are extensive. I believe the authors missed Jane and al 2021. In addition, I think, there is a mistake in the math.",
    "The paper gives really interesting insights on the topic of transfer learning. It is well presented and the experiment are extensive. Some parts remain really unclear and I would like to see a more detailed explanation of the proposed method.",
    "The paper gives really interesting insights on the topic of transfer learning. It is not well presented and lack experiments. Some parts remain really unclear and I would like to see a more detailed explanation of the proposed method.",
]


def make_colored_text_to_latex(scored_texts : List[Tuple[str, float]]):
    """

    Make a latex string from a list of scored texts.

    """

    # cast scores between 0 and 1
    scores = np.array([score for _, score in scored_texts])
    scores = (scores - scores.min()) / (scores.max() - scores.min())

    # make color map in hex
    cmap = sns.diverging_palette(250, 30, l=50, center="dark", as_cmap=True)
    hex_colors = [cmap(score)[0:3] for score in scores]
    # make html color string
    hex_colors = [",".join([str(round(x, 2)) for x in color]) for color in hex_colors]
    # make latex string
    latex_string = ""
    for (text, score), hex_color in zip(scored_texts, hex_colors):
        #latex_string += "\\textcolor[rgb]{" + str(hex_color) + "}{" + text + "} "
        latex_string += "\\hlc{" + str(hex_color)[1:-1] + "}{" + text + "} "

    return latex_string




def summarize(text1, text2, text3, iterations, rationality=1.0):
    # get sentences for each text

    text1_sentences = nltk.sent_tokenize(text1)
    text2_sentences = nltk.sent_tokenize(text2)
    text3_sentences = nltk.sent_tokenize(text3)


    # remove empty sentences
    text1_sentences = [sentence for sentence in text1_sentences if sentence != ""]
    text2_sentences = [sentence for sentence in text2_sentences if sentence != ""]
    text3_sentences = [sentence for sentence in text3_sentences if sentence != ""]

    sentences = list(set(text1_sentences + text2_sentences + text3_sentences))

    rsa_reranker = RSAReranking(
        model,
        tokenizer,
        candidates=sentences,
        source_texts=[text1, text2, text3],
        device="cpu",
        rationality=rationality,
    )
    (
        best_rsa,
        best_base,
        speaker_df,
        listener_df,
        initial_listener,
        language_model_proba_df,
        initial_consensuality_scores,
        consensuality_scores,
    ) = rsa_reranker.rerank(t=iterations)

    # apply exp to the probabilities
    speaker_df = speaker_df.applymap(lambda x: math.exp(x))

    text_1_summaries = speaker_df.loc[text1][text1_sentences]
    text_1_summaries = text_1_summaries / text_1_summaries.sum()

    text_2_summaries = speaker_df.loc[text2][text2_sentences]
    text_2_summaries = text_2_summaries / text_2_summaries.sum()

    text_3_summaries = speaker_df.loc[text3][text3_sentences]
    text_3_summaries = text_3_summaries / text_3_summaries.sum()

    # make list of tuples
    text_1_summaries = [(sentence, text_1_summaries[sentence]) for sentence in text1_sentences]
    text_2_summaries = [(sentence, text_2_summaries[sentence]) for sentence in text2_sentences]
    text_3_summaries = [(sentence, text_3_summaries[sentence]) for sentence in text3_sentences]

    # normalize consensuality scores between -1 and 1

    consensuality_scores = (consensuality_scores - (consensuality_scores.max() - consensuality_scores.min()) / 2) / (consensuality_scores.max() - consensuality_scores.min()) / 2
    consensuality_scores_01 = (consensuality_scores - consensuality_scores.min()) / (consensuality_scores.max() - consensuality_scores.min())


    most_consensual = consensuality_scores.sort_values(ascending=True).head(3).index.tolist()
    least_consensual = consensuality_scores.sort_values(ascending=False).head(3).index.tolist()

    most_consensual = [(sentence, consensuality_scores[sentence]) for sentence in most_consensual]
    least_consensual = [(sentence, consensuality_scores[sentence]) for sentence in least_consensual]

    text_1_consensuality = consensuality_scores.loc[text1_sentences]
    text_2_consensuality = consensuality_scores.loc[text2_sentences]
    text_3_consensuality = consensuality_scores.loc[text3_sentences]

    # rescale between -1 and 1
    # text_1_consensuality = (text_1_consensuality - (text_1_consensuality.max() - text_1_consensuality.min()) / 2) / (text_1_consensuality.max() - text_1_consensuality.min()) / 2
    # text_2_consensuality = (text_2_consensuality - (text_2_consensuality.max() - text_2_consensuality.min()) / 2) / (text_2_consensuality.max() - text_2_consensuality.min()) / 2
    # text_3_consensuality = (text_3_consensuality - (text_3_consensuality.max() - text_3_consensuality.min()) / 2) / (text_3_consensuality.max() - text_3_consensuality.min()) / 2

    text_1_consensuality = [(sentence, text_1_consensuality[sentence]) for sentence in text1_sentences]
    text_2_consensuality = [(sentence, text_2_consensuality[sentence]) for sentence in text2_sentences]
    text_3_consensuality = [(sentence, text_3_consensuality[sentence]) for sentence in text3_sentences]

    fig1 = plt.figure(figsize=(20, 10))
    ax = fig1.add_subplot(111)
    sns.heatmap(
        listener_df,
        ax=ax,
        cmap="Blues",
        annot=True,
        fmt=".2f",
        cbar=False,
        annot_kws={"size": 10},
    )
    ax.set_title("Listener probabilities")
    ax.set_xlabel("Candidate sentences")
    ax.set_ylabel("Source texts")
    ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
    fig1.tight_layout()

    fig2 = plt.figure(figsize=(20, 10))
    ax = fig2.add_subplot(111)
    sns.heatmap(
        speaker_df,
        ax=ax,
        cmap="Blues",
        annot=True,
        fmt=".2f",
        cbar=False,
        annot_kws={"size": 10},
    )
    ax.set_title("Speaker probabilities")
    ax.set_xlabel("Candidate sentences")
    ax.set_ylabel("Source texts")
    ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
    fig2.tight_layout()

    latex_text_1 = make_colored_text_to_latex(text_1_summaries)
    latex_text_2 = make_colored_text_to_latex(text_2_summaries)
    latex_text_3 = make_colored_text_to_latex(text_3_summaries)

    text_1_consensuality_ = consensuality_scores_01.loc[text1_sentences]
    text_2_consensuality_ = consensuality_scores_01.loc[text2_sentences]
    text_3_consensuality_ = consensuality_scores_01.loc[text3_sentences]

    text_1_consensuality_ = [(sentence, text_1_consensuality_[sentence]) for sentence in text1_sentences]
    text_2_consensuality_ = [(sentence, text_2_consensuality_[sentence]) for sentence in text2_sentences]
    text_3_consensuality_ = [(sentence, text_3_consensuality_[sentence]) for sentence in text3_sentences]

    latex_text_1_consensuality = make_colored_text_to_latex(text_1_consensuality_)
    latex_text_2_consensuality = make_colored_text_to_latex(text_2_consensuality_)
    latex_text_3_consensuality = make_colored_text_to_latex(text_3_consensuality_)
    
    latex = latex_template.replace("[REVIEW 1]", latex_text_1)
    latex = latex.replace("[REVIEW 2]", latex_text_2)
    latex = latex.replace("[REVIEW 3]", latex_text_3)


    return text_1_summaries, text_2_summaries, text_3_summaries, text_1_consensuality, text_2_consensuality, text_3_consensuality, most_consensual, least_consensual, fig1, fig2, latex


# make gradiot highlightedText component


iface = gr.Interface(
    fn=summarize,
    inputs=[
        gr.Textbox(lines=10, value=EXAMPLES[0]),
        gr.Textbox(lines=10, value=EXAMPLES[1]),
        gr.Textbox(lines=10, value=EXAMPLES[2]),
        gr.Number(value=1, label="Iterations"),
        gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=1.0, label="Rationality"),
    ],
    outputs=[
        gr.Highlightedtext(
            show_legend=True,
            label="Uniqueness score for each sentence in text 1",
        ),
        gr.Highlightedtext(
            show_legend=True,
            label="Uniqueness score for each sentence in text 2",
        ),
        gr.Highlightedtext(
            show_legend=True,
            label="Uniqueness score for each sentence in text 3",
        ),
        gr.Highlightedtext(
            show_legend=True,
            label="Consensuality score for each sentence in text 1",

        ),
        gr.Highlightedtext(
            show_legend=True,
            label="Consensuality score for each sentence in text 2",
        ),
        gr.Highlightedtext(
            show_legend=True,
            label="Consensuality score for each sentence in text 3",
        ),
        gr.Highlightedtext(
            show_legend=True,
            label="Most consensual sentences",

        ),
        gr.Highlightedtext(
            show_legend=True,
            label="Least consensual sentences",
        ),
        gr.Plot(
            label="Listener probabilities",
        ),
        gr.Plot(
            label="Speaker probabilities",
        ),

        gr.Textbox(lines=10, label="Latex Consensuality scores"),



    ],
    title="RSA Summarizer",
    description="Summarize 3 texts using RSA",
)

iface.launch()