File size: 3,502 Bytes
6fe7180 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from pathlib import Path
import nltk
from tqdm import tqdm
import sys, os.path
from torch.nn import functional as F
nltk.download('punkt')
BASE_DIR = Path(__file__).resolve().parent.parent.parent
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../../')))
from glimpse.glimpse.data_loading.Glimpse_tokenizer import glimpse_tokenizer
# === CONFIGURATION ===
MODEL_DIR = BASE_DIR / "alternative_polarity" / "deberta" / "deberta_v3_base_polarity_final_model"
DATA_DIR = BASE_DIR / "glimpse" / "data" / "processed"
OUTPUT_DIR = BASE_DIR / "data" / "polarity_scored"
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
# === Load model and tokenizer ===
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR)
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# === Tokenize like GLIMPSE ===
# def tokenize_sentences(text: str) -> list:
# # same tokenization as in the original glimpse code
# text = text.replace('-----', '\n')
# sentences = nltk.sent_tokenize(text)
# sentences = [sentence for sentence in sentences if sentence != ""]
# return sentences
# def predict_polarity(sentences):
# inputs = tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
# with torch.no_grad():
# outputs = model(**inputs)
# logits = outputs.logits
# temperature = 2.7 # Adjust temperature for scaling logits
# probs = F.softmax(logits / temperature, dim=-1)
# # Get probability of positive class
# polarity_scores = probs[:, 1]
# # Rescale: 0 β -1 (very negative), 1 β +1 (very positive)
# polarity_scores = (polarity_scores * 2) - 1
# return polarity_scores.cpu().tolist()
def predict_polarity(sentences):
inputs = tokenizer(
sentences,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
).to(device)
with torch.no_grad():
logits = model(**inputs).logits # (batch, 2)
logit_diff = logits[:,1] - logits[:,0]
alpha = 2.1 # tweak
scores = torch.tanh(alpha * logit_diff) # in [-1,1]
return scores.cpu().tolist()
def find_polarity(start_year=2017, end_year=2021):
for year in range(start_year, end_year + 1):
print(f"Processing {year}...")
input_path = DATA_DIR / f"all_reviews_{year}.csv"
output_path = OUTPUT_DIR / f"polarity_scored_reviews_{year}.csv"
df = pd.read_csv(input_path)
all_rows = []
for _, row in tqdm(df.iterrows(), total=len(df)):
review_id = row["id"]
text = row["text"]
sentences = glimpse_tokenizer(text)
if not sentences:
continue
labels = predict_polarity(sentences)
for sentence, polarity in zip(sentences, labels):
all_rows.append({"id": review_id, "sentence": sentence, "polarity": polarity})
output_df = pd.DataFrame(all_rows)
output_df.to_csv(output_path, index=False)
print(f"Saved polarity-scored data to {output_path}")
if __name__ == "__main__":
find_polarity() |