File size: 2,351 Bytes
6fe7180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

This is the repositotry of  GLIMPSE: Pragmatically Informative Multi-Document Summarization for Scholarly Reviews
[Paper](https://arxiv.org/abs/2406.07359) | [Code](https://github.com/icannos/glimpse-mds)


### Installation

- We use python 3.10 and CUDA 12.1
``` bash

module load miniconda/3

module load cuda12

```
- First, create a virtual environment using:
``` bash

conda create -n glimpse python=3.10

```
- Second, activate the environment and install pytorch:
``` bash

conda activate glimpse 

conda install pytorch==2.1.1 pytorch-cuda=12.1 -c pytorch -c nvidia

```

- Finally, all remaining required packages could be installed with the requirements file:

``` bash

pip install -r requirements

```
### Data Loading

Step 1: Start by processing the input files from data.

``` bash

python glimpse/data_loading/data_processing.py 

```

### Generating Summaries and Computing RSA Scores
Step 2: Now, we generate candidate summaries and compute RSA scores for each candidate
- for extractive candidates, use the following command:
``` bash

sbatch scripts/extractive.sh Path_of_Your_Processed_Dataset_Step1.csv

```
- for abstractive candidates, use either of the following commands:
  - In case the last batch is incomplete, you can add padding using `--add-padding` argument to complete it:
  ``` bash

  sbatch scripts/abstractive.sh Path_of_Your_Processed_Dataset_Step1.csv --add-padding

  ```
  - If you want to remove the last incomplete batch, you can run the script without the argument:
  ``` bash

  sbatch scripts/abstractive.sh Path_of_Your_Processed_Dataset_Step1.csv

  ```

`rsasumm/` provides a python package with an implementation of RSA incremental decoding and RSA reranking of candidates.
`mds/` provides the experiment scripts and analysis for the MultiDocument Summarization task.


## Citation

If you use this code, please cite the following papers:

```@misc{darrin2024glimpsepragmaticallyinformativemultidocument,

      title={GLIMPSE: Pragmatically Informative Multi-Document Summarization for Scholarly Reviews}, 

      author={Maxime Darrin and Ines Arous and Pablo Piantanida and Jackie CK Cheung},

      year={2024},

      eprint={2406.07359},

      archivePrefix={arXiv},

      primaryClass={cs.CL},

      url={https://arxiv.org/abs/2406.07359}, 

}

```