File size: 2,351 Bytes
6fe7180 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
This is the repositotry of GLIMPSE: Pragmatically Informative Multi-Document Summarization for Scholarly Reviews
[Paper](https://arxiv.org/abs/2406.07359) | [Code](https://github.com/icannos/glimpse-mds)
### Installation
- We use python 3.10 and CUDA 12.1
``` bash
module load miniconda/3
module load cuda12
```
- First, create a virtual environment using:
``` bash
conda create -n glimpse python=3.10
```
- Second, activate the environment and install pytorch:
``` bash
conda activate glimpse
conda install pytorch==2.1.1 pytorch-cuda=12.1 -c pytorch -c nvidia
```
- Finally, all remaining required packages could be installed with the requirements file:
``` bash
pip install -r requirements
```
### Data Loading
Step 1: Start by processing the input files from data.
``` bash
python glimpse/data_loading/data_processing.py
```
### Generating Summaries and Computing RSA Scores
Step 2: Now, we generate candidate summaries and compute RSA scores for each candidate
- for extractive candidates, use the following command:
``` bash
sbatch scripts/extractive.sh Path_of_Your_Processed_Dataset_Step1.csv
```
- for abstractive candidates, use either of the following commands:
- In case the last batch is incomplete, you can add padding using `--add-padding` argument to complete it:
``` bash
sbatch scripts/abstractive.sh Path_of_Your_Processed_Dataset_Step1.csv --add-padding
```
- If you want to remove the last incomplete batch, you can run the script without the argument:
``` bash
sbatch scripts/abstractive.sh Path_of_Your_Processed_Dataset_Step1.csv
```
`rsasumm/` provides a python package with an implementation of RSA incremental decoding and RSA reranking of candidates.
`mds/` provides the experiment scripts and analysis for the MultiDocument Summarization task.
## Citation
If you use this code, please cite the following papers:
```@misc{darrin2024glimpsepragmaticallyinformativemultidocument,
title={GLIMPSE: Pragmatically Informative Multi-Document Summarization for Scholarly Reviews},
author={Maxime Darrin and Ines Arous and Pablo Piantanida and Jackie CK Cheung},
year={2024},
eprint={2406.07359},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2406.07359},
}
``` |