File size: 36,945 Bytes
6fe7180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced9c51
6fe7180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4e448
6fe7180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e007f
6fe7180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
import math

import sys, os.path

import torch
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../')))

from glimpse.rsasumm.rsa_reranker import RSAReranking
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
import pandas as pd

from scored_reviews_builder import load_scored_reviews
from glimpse.glimpse.data_loading.Glimpse_tokenizer import glimpse_tokenizer
# from scibert.scibert_polarity.scibert_polarity import predict_polarity

# Load scored reviews
years, all_scored_reviews_df = load_scored_reviews()

# -----------------------------------
# Pre-processed Tab
# -----------------------------------

def get_preprocessed_scores(year):
    scored_reviews = all_scored_reviews_df[all_scored_reviews_df["year"] == year]["scored_dict"].iloc[0]
    return scored_reviews


# -----------------------------------
# Interactive Tab
# -----------------------------------

# RSA_model = "facebook/bart-large-cnn"
RSA_model = "sshleifer/distilbart-cnn-12-3"

model = AutoModelForSeq2SeqLM.from_pretrained(RSA_model)
tokenizer = AutoTokenizer.from_pretrained(RSA_model)

# Define the manual color map for topics
topic_color_map = {
    "Substance": "#cce0ff",             # lighter blue
    "Clarity": "#e6ee9c",               # lighter yellow-green
    "Soundness/Correctness": "#ffcccc", # lighter red
    "Originality": "#d1c4e9",           # lighter purple
    "Motivation/Impact": "#b2ebf2",     # lighter teal
    "Meaningful Comparison": "#fff9c4", # lighter yellow
    "Replicability": "#c8e6c9",         # lighter green
}


# GLIMPSE Home/Description Page
glimpse_description = """
# ReView: A Tool for Visualizing and Analyzing Scientific Reviews

## **Overview**
ReView is a visualization tool designed to assist **area chairs** and **researchers** in efficiently analyzing scholarly reviews. The interface offers two main ways to explore scholarly reviews:
- Pre-Processed Reviews: Explore real peer reviews from ICLR (2017–2021) with structured visualizations of sentiment, topics, and reviewer agreement.
- Interactive Tab: Enter your own reviews and view them analyzed in real time using the same NLP-powered highlighting options.

All reviews are shown in their original, unaltered form, with visual overlays to help identify key insights such as disagreements, sentiment and common themesβ€”reducing cognitive load and scrolling effort.

---
## **Key Features**
- *Traceability and Transparency:* The tool preserves the original text of each review and overlays highlights for key aspects (e.g., sentiment, topic, agreement), allowing area chairs to trace back every insight to its source without modifying or summarizing the content.
- *Structured Overview*: All reviews are displayed in one interface and with radio buttons, one can navigate from one highlighting option to the other.
- *Interactive*: The tool allows users to input their own reviews and, within seconds, view them annotated with highlighted aspects
---
## **Highlighting Options**
- *Agreement:* Identifies both shared and conflicting points across reviews, helping to surface consensus and disagreement.
- *Polarity:* Highlights positive and negative sentiments within the reviews to reveal tone and stance.
- *Topic:* Organizes the review sentences by their discussed topics, ensuring coverage of diverse reviewer perspectives and improving clarity. 

---

### How to Use ReView

ReView offers two main ways to explore peer reviews: using pre-processed reviews or by entering your own.

#### πŸ—‚οΈ Pre-Processed Reviews Tab

Use this tab to explore reviews from ICLR (2017–2021):

1. **Select a conference year** from the dropdown menu on the right.
2. **Navigate between submissions** using the *Next* and *Previous* buttons on the left.
3. **Choose a highlighting view** using the radio buttons:
   - **Original**: Displays unmodified review text.
   - **Agreement**: Highlights consensus points in **red** and disagreements in **purple**.
   - **Polarity**: Highlights **positive** sentiment in **green** and **negative** sentiment in **red**.
   - **Topic**: Highlights comments by discussion topic using color-coded labels.

#### ✍️ Interactive Tab

Use this tab to analyze your own review text:

1. **Enter up to three reviews** in the input fields labeled *Review 1*, *Review 2*, and *Review 3*.
2. **Click "Process"** to analyze the input (average processing time: ~42 seconds).
3. **Explore the results** using the same highlighting options as above (Agreement, Polarity, Topic).
"""


EXAMPLES = [
    "The paper gives really interesting insights on the topic of transfer learning. It is well presented and the experiment are extensive. I believe the authors missed Jane and al 2021. In addition, I think, there is a mistake in the math.",
    "The paper gives really interesting insights on the topic of transfer learning. It is well presented and the experiment are extensive. Some parts remain really unclear and I would like to see a more detailed explanation of the proposed method.",
    "The paper gives really interesting insights on the topic of transfer learning. It is not well presented and lack experiments. Some parts remain really unclear and I would like to see a more detailed explanation of the proposed method.",
]

# Function to summarize the input texts using the RSAReranking model in interactive mode
def summarize(text1, text2, text3, focus, mode, rationality=1.0, iterations=1):
    
    # print(focus, mode, rationality, iterations)
    
    # get sentences for each text
    text2_sentences = glimpse_tokenizer(text2)
    text1_sentences = glimpse_tokenizer(text1)
    text3_sentences = glimpse_tokenizer(text3)


    # remove empty sentences
    text1_sentences = [sentence for sentence in text1_sentences if sentence != ""]
    text2_sentences = [sentence for sentence in text2_sentences if sentence != ""]
    text3_sentences = [sentence for sentence in text3_sentences if sentence != ""]

    sentences = list(set(text1_sentences + text2_sentences + text3_sentences))
    
    # Load polarity model and tokenizer (SciBERT)
    polarity_model_path = "Sina1138/Scibert_polarity_Review"
    polarity_tokenizer = AutoTokenizer.from_pretrained(polarity_model_path)
    polarity_model = AutoModelForSequenceClassification.from_pretrained(polarity_model_path)
    polarity_model.eval()
    polarity_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    polarity_model.to(polarity_device)

    def predict_polarity(sent_list):
        inputs = polarity_tokenizer(
            sent_list, return_tensors="pt", padding=True, truncation=True, max_length=512
        ).to(polarity_device)
        with torch.no_grad():
            logits = polarity_model(**inputs).logits
            preds = torch.argmax(logits, dim=1).cpu().tolist()
        emoji_map = {0: "βž–", 1: None, 2: "βž•"}
        return dict(zip(sent_list, [emoji_map[p] for p in preds]))


    # Run polarity prediction
    polarity_map = predict_polarity(sentences)


    # Load topic model and tokenizer (SciBERT)
    topic_model_path = "Sina1138/SciDeberta_Review"
    topic_tokenizer = AutoTokenizer.from_pretrained(topic_model_path)
    topic_model = AutoModelForSequenceClassification.from_pretrained(topic_model_path)
    topic_model.eval()
    topic_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    topic_model.to(topic_device)
    
    def predict_topic(sent_list):
        inputs = topic_tokenizer(
            sent_list, return_tensors="pt", padding=True, truncation=True, max_length=512
        ).to(topic_device)
        with torch.no_grad():
            logits = topic_model(**inputs).logits
            preds = torch.argmax(logits, dim=1).cpu().tolist()
        
        # Topic ID to label and emoji
        id2label = {
            0: "Substance",
            1: "Clarity",
            2: "Correctness",
            3: "Originality",
            4: "Impact",
            5: "Comparison",
            6: "Replicability",
            7: None  # This is used for sentences that do not match any specific topic,
        }
        return dict(zip(sent_list, [id2label[p] for p in preds]))
    
    # Run topic prediction
    topic_map = predict_topic(sentences)
    


    rsa_reranker = RSAReranking(
        model,
        tokenizer,
        candidates=sentences,
        source_texts=[text1, text2, text3],
        device="cpu",
        rationality=rationality,
    )
    (
        best_rsa,
        best_base,
        speaker_df,
        listener_df,
        initial_listener,
        language_model_proba_df,
        initial_consensuality_scores,
        consensuality_scores,
    ) = rsa_reranker.rerank(t=iterations)

    # apply exp to the probabilities
    speaker_df = speaker_df.applymap(lambda x: math.exp(x))

    text_1_summaries = speaker_df.loc[text1][text1_sentences]
    text_1_summaries = text_1_summaries / text_1_summaries.sum()

    text_2_summaries = speaker_df.loc[text2][text2_sentences]
    text_2_summaries = text_2_summaries / text_2_summaries.sum()

    text_3_summaries = speaker_df.loc[text3][text3_sentences]
    text_3_summaries = text_3_summaries / text_3_summaries.sum()

    # make list of tuples
    text_1_summaries = [(sentence, text_1_summaries[sentence]) for sentence in text1_sentences]
    text_2_summaries = [(sentence, text_2_summaries[sentence]) for sentence in text2_sentences]
    text_3_summaries = [(sentence, text_3_summaries[sentence]) for sentence in text3_sentences]

    # normalize consensuality scores between -1 and 1
    consensuality_scores = (consensuality_scores - (consensuality_scores.max() - consensuality_scores.min()) / 2) / (consensuality_scores.max() - consensuality_scores.min()) / 2

    # get most and least consensual sentences
    # most consensual --> most common; least consensual --> most unique
    most_consensual = consensuality_scores.sort_values(ascending=True).head(3).index.tolist()
    least_consensual = consensuality_scores.sort_values(ascending=False).head(3).index.tolist()
    
    # Convert lists to strings
    most_consensual = " ".join(most_consensual)
    least_consensual = " ".join(least_consensual)

    text_1_consensuality = consensuality_scores.loc[text1_sentences]
    text_2_consensuality = consensuality_scores.loc[text2_sentences]
    text_3_consensuality = consensuality_scores.loc[text3_sentences]

    text_1_consensuality = [(sentence, text_1_consensuality[sentence]) for sentence in text1_sentences]
    text_2_consensuality = [(sentence, text_2_consensuality[sentence]) for sentence in text2_sentences]
    text_3_consensuality = [(sentence, text_3_consensuality[sentence]) for sentence in text3_sentences]


    def highlight_reviews(text_sentences, consensuality_scores, threshold_common=0.0, threshold_unique=0.0):
        highlighted = []
        for sentence in text_sentences:
            # print(f"Processing sentence: {sentence}", "score:", consensuality_scores.loc[sentence])
            score = consensuality_scores.loc[sentence]
            score = score*2 if score > 0 else score  # amplify unique scores for better visibility
            
            # common sentences --> positive consensuality scores
            # unique sentences --> negative consensuality scores
            
            score *= -1 # invert the score for highlighting
            
            highlighted.append((sentence, score))
        return highlighted

    # Apply highlighting to each review
    text_1_agreement = highlight_reviews(text1_sentences, consensuality_scores)
    text_2_agreement = highlight_reviews(text2_sentences, consensuality_scores)
    text_3_agreement = highlight_reviews(text3_sentences, consensuality_scores)
    
    # Add polarity outputs
    text_1_polarity = [(s, polarity_map[s]) for s in text1_sentences]
    text_2_polarity = [(s, polarity_map[s]) for s in text2_sentences]
    text_3_polarity = [(s, polarity_map[s]) for s in text3_sentences]
    
    # Add topic outputs
    text_1_topic = [(s, topic_map[s]) for s in text1_sentences]
    text_2_topic = [(s, topic_map[s]) for s in text2_sentences]
    text_3_topic = [(s, topic_map[s]) for s in text3_sentences]
    
    # print(type(text_1_consensuality))
    return (
        # text_1_summaries, text_2_summaries, text_3_summaries,
        # text_1_consensuality, text_2_consensuality, text_3_consensuality,
        text_1_agreement, text_2_agreement, text_3_agreement,
        most_consensual, least_consensual,
        text_1_polarity, text_2_polarity, text_3_polarity,
        text_1_topic, text_2_topic, text_3_topic,
    )




with gr.Blocks(title="ReView") as demo:
    # gr.Markdown("# ReView Interface")
    
    with gr.Tab("Introduction"):
        gr.Markdown(glimpse_description)
        
    # -----------------------------------
    # Pre-processed Tab
    # -----------------------------------
    with gr.Tab("Pre-processed Reviews"):
        # Initialize state for this session.
        initial_year = 2017
        initial_scored_reviews = get_preprocessed_scores(initial_year)
        initial_review_ids = list(initial_scored_reviews.keys())
        initial_review = initial_scored_reviews[initial_review_ids[0]]
        number_of_displayed_reviews = len(initial_scored_reviews[initial_review_ids[0]])
        initial_state = {
            "year_choice": initial_year,
            "scored_reviews_for_year": initial_scored_reviews,
            "review_ids": initial_review_ids,
            "current_review_index": 0,
            "current_review": initial_review,
            "number_of_displayed_reviews": number_of_displayed_reviews,
        }
        state = gr.State(initial_state)

        def update_review_display(state, score_type):

            review_ids = state["review_ids"]
            current_index = state["current_review_index"]
            current_review = state["scored_reviews_for_year"][review_ids[current_index]]

            show_polarity = score_type == "Polarity"
            show_consensuality = score_type == "Agreement"
            show_topic = score_type == "Topic"
            
            
            if show_polarity:
                color_map = {"βž•": "#d4fcd6", "βž–": "#fcd6d6"}
                legend = False
            elif show_topic:
                color_map = topic_color_map  # No color map for topics
                legend = False
            elif show_consensuality:
                color_map = None  # Continuous scale, no predefined colors
                legend = True
            else:
                color_map = {}  # Default to empty map
                legend = False

            new_review_id = (
                f"### Submission Link:\n\n{review_ids[current_index]}<br>"
                f"(Showing {current_index + 1} of {len(state['review_ids'])} reviews)"
            )

            number_of_displayed_reviews = len(current_review)
            review_updates = []
            consensuality_dict = {}

            for i in range(8):
                if i < number_of_displayed_reviews:
                    review_item = list(current_review[i].items())

                    if show_polarity:
                        highlighted = []
                        for sentence, metadata in review_item:
                            polarity = metadata.get("polarity", None)
                            if polarity >= 0.995:
                                label = "βž•"  # positive
                            elif polarity <= -0.99:
                                label = "βž–"  # negative
                            else:
                                label = None  # ignore neutral (1)
                            highlighted.append((sentence, label))
                    elif show_consensuality:
                        highlighted = []
                        for sentence, metadata in review_item:
                            score = metadata.get("consensuality", 0.0)
                            score = score * 2 - 1  # Normalize to [-1, 1]
                            score = score/2.5 if score > 0 else score  # Amplify unique scores for better visibility
                            score *= -1  # Invert the score for highlighting
                            
                            consensuality_dict[sentence] = score
                            highlighted.append((sentence, score))
                        
                    elif show_topic:
                        highlighted = []
                        for sentence, metadata in review_item:
                            topic = metadata.get("topic", None)
                            if topic != "NONE":
                                highlighted.append((sentence, topic))
                            else:
                                highlighted.append((sentence, None))
                    else:
                        highlighted = [
                            (sentence, None)
                            for sentence, metadata in review_item
                        ]

                    review_updates.append(
                        gr.update(
                            visible=True,
                            value=highlighted,
                            color_map=color_map,
                            show_legend=legend,
                            key=f"updated_{score_type}_{i}"
                        )
                    )
                else:
                    review_updates.append(
                        gr.update(
                            visible=False,
                            value=[],
                            show_legend=False,
                            color_map=color_map,
                            key=f"updated_{score_type}_{i}"
                        )
                    )

            # Set most consensual / unique sentences
            if show_consensuality and consensuality_dict:
                scores = pd.Series(consensuality_dict)
                most_unique = scores.sort_values(ascending=True).head(3).index.tolist()
                most_common = scores.sort_values(ascending=False).head(3).index.tolist()
                most_common_text = "\n".join(most_common)
                most_unique_text = "\n".join(most_unique)

                most_common_visibility = gr.update(visible=True, value=most_common_text)
                most_unique_visibility = gr.update(visible=True, value=most_unique_text)
            else:
                # Debugging statements to check visibility settings
                # print("Hiding most common and unique sentences")

                most_common_visibility = gr.update(visible=False, value=[])
                most_unique_visibility = gr.update(visible=False, value=[])
                
            # update topic color map
            if show_topic:
                topic_color_map_visibility = gr.update(
                    visible=True,
                    color_map=topic_color_map,
                    value=[
                        ("", "Substance"),
                        ("", "Clarity"),
                        ("", "Soundness/Correctness"),
                        ("", "Originality"),
                        ("", "Motivation/Impact"),
                        ("", "Meaningful Comparison"),
                        ("", "Replicability"),
                    ]
                )
            else:
                topic_color_map_visibility = gr.update(visible=False, value=[])

            return (
                new_review_id,
                *review_updates,
                most_common_visibility,
                most_unique_visibility,
                topic_color_map_visibility,
                state
            )



        # Precompute the initial outputs so something is shown on load.
        init_display = update_review_display(initial_state, score_type="Original")
        # init_display returns: (review_id, review1, review2, review3, review4, review5, review6, review7, review8, state)

        with gr.Row():
            
            with gr.Column(scale=1):
                review_id = gr.Markdown(value=init_display[0], container=True)
                with gr.Row():
                    previous_button = gr.Button("Previous", variant="secondary", interactive=True)
                    next_button = gr.Button("Next", variant="primary", interactive=True)
                    
                    
            with gr.Column(scale=1):
                # Input controls.
                year = gr.Dropdown(choices=years, label="Select Year", interactive=True, value=initial_year)
                score_type = gr.Radio(
                    choices=["Original", "Agreement", "Polarity", "Topic"],
                    label="Score Type to Display",
                    value="Original",
                    interactive=True
                )

        # Output display.
        with gr.Row():
            most_common_sentences = gr.Textbox(
            lines=8,
            label="Most Common Opinions",
            visible=False,
            value=[]
        )
            most_unique_sentences = gr.Textbox(
            lines=8,
            label="Most Divergent Opinions",
            visible=False,
            value=[]
        )
        
        # Add a new textbox for topic labels and colors
        topic_text_box = gr.HighlightedText(
            label="Topic Labels (Color-Coded)",
            visible=False,
            value=[],
            show_legend=True,
        )
        
        review1 = gr.HighlightedText(
            show_legend=False,
            label="Review 1",
            visible= number_of_displayed_reviews >= 1,
            key="initial_review1",
            # color_map={"Positive": "#d4fcd6", "Negative": "#fcd6d6"}
        )
        review2 = gr.HighlightedText(
            show_legend=False,
            label="Review 2",
            visible= number_of_displayed_reviews >= 2,
            key="initial_review2"
            # color_map={"Positive": "#d4fcd6", "Negative": "#fcd6d6"}
        )
        review3 = gr.HighlightedText(
            show_legend=False,
            label="Review 3",
            visible= number_of_displayed_reviews >= 3,
            key="initial_review3"
            # color_map={"Positive": "#d4fcd6", "Negative": "#fcd6d6"}
        )
        review4 = gr.HighlightedText(
            show_legend=False,
            label="Review 4",
            visible= number_of_displayed_reviews >= 4,
            key="initial_review4"
            # color_map={"Positive": "#d4fcd6", "Negative": "#fcd6d6"}
        )
        review5 = gr.HighlightedText(
            show_legend=False,
            label="Review 5",
            visible= number_of_displayed_reviews >= 5,
            key="initial_review5"
            # color_map={"Positive": "#d4fcd6", "Negative": "#fcd6d6"}
        )
        review6 = gr.HighlightedText(
            show_legend=False,
            label="Review 6",
            visible= number_of_displayed_reviews >= 6,
            key="initial_review6"
            # color_map={"Positive": "#d4fcd6", "Negative": "#fcd6d6"}
        )
        review7 = gr.HighlightedText(
            show_legend=False,
            label="Review 7",
            visible= number_of_displayed_reviews >= 7,
            key="initial_review7"
            # color_map={"Positive": "#d4fcd6", "Negative": "#fcd6d6"}
        )
        review8 = gr.HighlightedText(
            show_legend=False,
            label="Review 8",
            visible= number_of_displayed_reviews >= 8,
            key="initial_review8"
            # color_map={"Positive": "#d4fcd6", "Negative": "#fcd6d6"}
        )

        # Callback functions that update state.
        def year_change(year, state, score_type):
            state["year_choice"] = year
            state["scored_reviews_for_year"] = get_preprocessed_scores(year)
            state["review_ids"] = list(state["scored_reviews_for_year"].keys())
            state["current_review_index"] = 0
            state["current_review"] = state["scored_reviews_for_year"][state["review_ids"][0]]
            return update_review_display(state, score_type)

        def next_review(state, score_type):
            state["current_review_index"] = (state["current_review_index"] + 1) % len(state["review_ids"])
            state["current_review"] = state["scored_reviews_for_year"][state["review_ids"][state["current_review_index"]]]
            return update_review_display(state, score_type)

        def previous_review(state, score_type):
            state["current_review_index"] = (state["current_review_index"] - 1) % len(state["review_ids"])
            state["current_review"] = state["scored_reviews_for_year"][state["review_ids"][state["current_review_index"]]]
            return update_review_display(state, score_type)

        # Hook up the callbacks with the session state.
        year.change(
            fn=year_change,
            inputs=[year, state, score_type],
            outputs=[review_id, review1, review2, review3, review4, review5, review6, review7, review8, most_common_sentences, most_unique_sentences, topic_text_box, state]
        )
        score_type.change(
            fn=update_review_display,
            inputs=[state, score_type],
            outputs=[review_id, review1, review2, review3, review4, review5, review6, review7, review8, most_common_sentences, most_unique_sentences, topic_text_box, state]
        )
        next_button.click(
            fn=next_review,
            inputs=[state, score_type],
            outputs=[review_id, review1, review2, review3, review4, review5, review6, review7, review8, most_common_sentences, most_unique_sentences, topic_text_box, state]
        )
        previous_button.click(
            fn=previous_review,
            inputs=[state, score_type],
            outputs=[review_id, review1, review2, review3, review4, review5, review6, review7, review8, most_common_sentences, most_unique_sentences, topic_text_box, state]
        )   
        
        
        
        
    # -----------------------------------
    # Interactive Tab
    # -----------------------------------
    with gr.Tab("Interactive", interactive=True):            
        with gr.Row():
            with gr.Column():
                
                gr.Markdown("## Input Reviews")
                
                # review_count = gr.Slider(minimum=1, maximum=3, step=1, value=3, label="Number of Reviews", interactive=True)

                review1_textbox = gr.Textbox(lines=5, value=EXAMPLES[0], label="Review 1", interactive=True)
                review2_textbox = gr.Textbox(lines=5, value=EXAMPLES[1], label="Review 2", interactive=True)
                review3_textbox = gr.Textbox(lines=5, value=EXAMPLES[2], label="Review 3", interactive=True)
                
                with gr.Row():
                    submit_button = gr.Button("Process", variant="primary", interactive=True)
                    clear_button = gr.Button("Clear", variant="secondary", interactive=True)
                gr.Markdown("**Note**: *Once your inputs are processed, you can see the different result by <ins>**only changing the parameters**</ins>, and without the need to re-process.*", container=True)
                
                
                
            with gr.Column():
                
                gr.Markdown("## Results")
                
                mode_radio = gr.Radio(
                    choices=[("In-line Highlighting", "highlight"), ("Generate Summaries", "summary")],
                    value="highlight",
                    label="Output Mode:",
                    interactive=False,
                    visible=False  # Initially hidden, will be shown based on mode selection
                )
                focus_radio = gr.Radio(
                    choices=[("Agreement", "unique"), "Polarity", "Topic",],
                    value="unique",
                    label="Focus on:",
                    interactive=True
                )                
                generation_method_radio = gr.Radio(
                    choices=[("Extractive", "extractive")], #TODO: add ("Abstractive", "abstractive") and abstractive generation
                    value="extractive",
                    label="Generation Method:",
                    interactive=True,
                    visible=False
                )
                
                # Fixed rationality (3.0) and iterations (2) to be consistent with the compute_rsa.py script
                #iterations_slider = gr.Slider(minimum=1, maximum=10, step=1, value=2, label="Iterations", interactive=False, visible=False)
                # rationality_slider = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=2.0, label="Rationality", interactive=False, visible=False)
                    
                with gr.Row():
                    unique_sentences = gr.Textbox(
                        lines=6, label="Most Divergent Opinions", visible=True, value=None, container=True
                    )
                    common_sentences = gr.Textbox(
                        lines=6, label="Most Common Opinions", visible=True, value=None, container=True
                    )
                
                uniqueness_score_text1 = gr.HighlightedText(
                    show_legend=True, label="Agreement in Review 1", visible=True, value=None,
                )
                uniqueness_score_text2 = gr.HighlightedText(
                    show_legend=True, label="Agreement in Review 2", visible=True, value=None,
                )
                uniqueness_score_text3 = gr.HighlightedText(
                    show_legend=True, label="Agreement in Review 3", visible=True, value=None,
                )
                
                
                polarity_score_text1 = gr.HighlightedText(
                    show_legend=True, label="Polarity in Review 1", visible=False, value=None,
                    color_map={"βž•": "#d4fcd6", "βž–": "#fcd6d6" }
                )
                polarity_score_text2 = gr.HighlightedText(
                    show_legend=True, label="Polarity in Review 2", visible=False, value=None,
                    color_map={"βž•": "#d4fcd6", "βž–": "#fcd6d6" }
                )
                polarity_score_text3 = gr.HighlightedText(
                    show_legend=True, label="Polarity in Review 3", visible=False, value=None,
                    color_map={"βž•": "#d4fcd6", "βž–": "#fcd6d6" }
                )
                
                aspect_score_text1 = gr.HighlightedText(
                    show_legend=False, label="Topic in Review 1", visible=False, value=None,
                    color_map = topic_color_map
                )
                aspect_score_text2 = gr.HighlightedText(
                    show_legend=False, label="Topic in Review 2", visible=False, value=None,
                    color_map = topic_color_map
                )
                aspect_score_text3 = gr.HighlightedText(
                    show_legend=False, label="Topic in Review 3", visible=False, value=None,
                    color_map = topic_color_map
                )
                
                

            
            # Connect summarize function to submit button
            submit_button.click(
                fn=summarize,
                inputs=[
                    review1_textbox, review2_textbox, review3_textbox,
                    focus_radio, mode_radio
                ],
                outputs=[
                    uniqueness_score_text1, uniqueness_score_text2, uniqueness_score_text3,
                    common_sentences, unique_sentences,
                    polarity_score_text1, polarity_score_text2, polarity_score_text3,
                    aspect_score_text1, aspect_score_text2, aspect_score_text3 
                    
                ]
            )
            
            # Define clear button behavior
            clear_button.click(
                fn=lambda: (None, None, None, None, None, None, None, None, None, None, None), # clear all fields
                inputs=[],
                outputs=[
                    review1_textbox, review2_textbox, review3_textbox,
                    uniqueness_score_text1, uniqueness_score_text2, uniqueness_score_text3,
                    common_sentences, unique_sentences
                ]
            )
            
            # Update visibility of generation_method_radio based on mode_radio value
            # def toggle_generation_method(mode):
            #     if mode == "summary":
            #         return gr.update(visible=True), gr.update(visible=False) # show generation method radio, hide focus radio
            #     else:
            #         return gr.update(visible=False), gr.update(visible=True) # show focus radio, hide generation method radio
            
            # mode_radio.change(
            #     fn=toggle_generation_method,
            #     inputs=mode_radio,
            #     outputs=[generation_method_radio, focus_radio]
            # )
            
            # Update visibility of output textboxes based on mode_radio and focus_radio values
            def toggle_output_textboxes(mode, focus):
                if mode == "highlight" and focus == "unique":
                    return (
                        gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), # in-line uniqueness highlights
                        gr.update(visible=True), gr.update(visible=True), # summary highlights
                        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), # polarity highlights
                        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) # aspect highlights
                    )

                elif focus == "Polarity":
                    return (
                        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), # in-line uniqueness highlights
                        gr.update(visible=False), gr.update(visible=False), # summary highlights
                        gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), # polarity highlights
                        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) # aspect highlights
                    )
                
                elif focus == "Topic":
                    return (
                        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), # in-line uniqueness highlights
                        gr.update(visible=False), gr.update(visible=False), # summary highlights
                        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), # polarity highlights
                        gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) # aspect highlights
                    )
            
            focus_radio.change(
                fn=toggle_output_textboxes,
                inputs=[mode_radio, focus_radio],
                outputs=[
                    uniqueness_score_text1, uniqueness_score_text2, uniqueness_score_text3,
                    common_sentences, unique_sentences,
                    polarity_score_text1, polarity_score_text2, polarity_score_text3,
                    aspect_score_text1, aspect_score_text2, aspect_score_text3
                ]
            )
            # mode_radio.change(
            #     fn=toggle_output_textboxes,
            #     inputs=[mode_radio, focus_radio],
            #     outputs=[
            #         uniqueness_score_text1, uniqueness_score_text2, uniqueness_score_text3,
            #         consensuality_score_text1, consensuality_score_text2, consensuality_score_text3,
            #         most_consensual_sentences, most_unique_sentences
            #     ]
            # )
           
        # TODO: Configure the slider for the number of review boxes 
        
        # def toggle_reviews(number_of_displayed_reviews):
        #     number_of_displayed_reviews = int(number_of_displayed_reviews)
        #     updates = []
        #     # for review(i), set visible True if its index is <= n, otherwise False.
        #     for i in range(1, 4): updates.append(gr.update(visible=(i <= number_of_displayed_reviews)))
        #     return tuple(updates)

        # review_count.change(
        #     fn=toggle_reviews,
        #     inputs=[review_count],
        #     outputs=[review1_textbox, review2_textbox, review3_textbox]
        # )
        
    demo.load(
        fn=update_review_display,
        inputs=[state, score_type],
            outputs=[review_id, review1, review2, review3, review4, review5, review6, review7, review8, most_common_sentences, most_unique_sentences, topic_text_box, state]
    )          

demo.launch(share=False)