File size: 6,012 Bytes
6fe7180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import pandas as pd
import nltk
import ast
from pathlib import Path
from tqdm import tqdm
import json

BASE_DIR = Path(__file__).resolve().parent

from glimpse.glimpse.data_loading.Glimpse_tokenizer import glimpse_tokenizer

# def tokenize_sentences(text: str) -> list:
#     # same tokenization as in the original glimpse code
#     text = text.replace('-----', '\n')
#     sentences = nltk.sent_tokenize(text)
#     sentences = [sentence for sentence in sentences if sentence != ""]
#     return sentences        
        
        
def preprocessed_scores(

        original_csv_path: Path,

        scored_csv_path: Path,

        polarity_csv_path: Path,

        topic_csv_path: Path,

    ) -> dict:
    
    original_df = pd.read_csv(original_csv_path)
    scored_df = pd.read_csv(scored_csv_path)
    polarity_df = pd.read_csv(polarity_csv_path)
    topic_df = pd.read_csv(topic_csv_path)

    scored_reviews = {}

    for _, row in tqdm(original_df.iterrows(), total=len(original_df)):
        review_id = row["id"]
        review_text = row["text"]

        if review_id not in scored_df["id"].values or review_id not in polarity_df["id"].values:
            continue

        if review_id not in scored_reviews:
            scored_reviews[review_id] = []

        # Get consensuality scores
        consensuality_scores_str = scored_df[scored_df["id"] == review_id]["consensuality_scores"].iloc[0]
        try:
            consensuality_scores_dict = json.loads(consensuality_scores_str)
        except Exception as e:
            print(f"Error parsing consensuality scores for ID {review_id}: {e}")
            print("Problematic string:", consensuality_scores_str)
            continue  # skip this problematic entry

        # Get polarity scores
        polarity_rows = polarity_df[polarity_df["id"] == review_id]
        polarity_dict = dict(zip(polarity_rows["sentence"], polarity_rows["polarity"]))
        
        # Get topic scores
        topic_rows = topic_df[topic_df["id"] == review_id]
        topic_dict = dict(zip(topic_rows["sentence"], topic_rows["topic"]))

        scored_sentences = {}
        for sentence in glimpse_tokenizer(review_text):
            sentence_data = {}
            if sentence in consensuality_scores_dict:
                sentence_data["consensuality"] = consensuality_scores_dict[sentence]
            if sentence in polarity_dict:
                sentence_data["polarity"] = polarity_dict[sentence]
            if sentence in topic_dict:
                sentence_data["topic"] = topic_dict[sentence]
            if sentence_data:
                scored_sentences[sentence] = sentence_data

        scored_reviews[review_id].append(scored_sentences)

    return scored_reviews


def save_all_scored_reviews(

        start_year: int = 2017,

        end_year: int = 2021,

        input_dir: Path = BASE_DIR / "glimpse" / "data" / "processed",

        scored_csv_dir: Path = BASE_DIR / "data",

        polarity_dir: Path = BASE_DIR / "data" / "polarity_scored",

        topic_dir: Path = BASE_DIR / "data" / "topic_scored",

        output_csv_path: Path = BASE_DIR / "data" / "preprocessed_scored_reviews.csv",

    ):
    
    all_scored_reviews = []

    for year in range(start_year, end_year + 1):
        print(f"Processing {year}...")
        try:
            original_csv_path = input_dir / f"all_reviews_{year}.csv"
            polarity_csv_path = polarity_dir / f"polarity_scored_reviews_{year}.csv"
            topic_csv_path = topic_dir / f"topic_scored_reviews_{year}.csv"
            scored_csv_path = scored_csv_dir / f"GLIMPSE_results_{year}.csv"
            scored_reviews = preprocessed_scores(
                original_csv_path,
                scored_csv_path,
                polarity_csv_path,
                topic_csv_path
            )
            all_scored_reviews.append({
                "year": year,
                "scored_dict": scored_reviews
            })

        except Exception as e:
            print(f"Skipped {year} due to error: {e}")

    df = pd.DataFrame(all_scored_reviews)
    df.to_csv(output_csv_path, index=False)
    print(f"All scored reviews saved to '{output_csv_path}'.")


def load_scored_reviews(csv_path: Path = BASE_DIR / "data" / "preprocessed_scored_reviews.csv") -> tuple:
    df = pd.read_csv(csv_path)
    df["scored_dict"] = df["scored_dict"].apply(ast.literal_eval)
    years = df["year"].tolist()
    
    return years, df


if __name__ == "__main__":
    save_all_scored_reviews()
    years, all_scored_reviews_df = load_scored_reviews()
    
    # Debugging sample output
    sample_year = 2017

    sample_df = all_scored_reviews_df[all_scored_reviews_df["year"] == sample_year]
    review_dict = sample_df["scored_dict"].iloc[0]

    print(f"\n=== Sample Review from {sample_year} ===")
    for review_id, sentence_data_list in review_dict.items():
        print(f"\nReview ID: {review_id}")
        for sentence_dict in sentence_data_list:
            for sentence, data in sentence_dict.items():
                print(f"  Sentence: {sentence}")
                for key, value in data.items():
                    print(f"    → {key}: {value}")
            break  # print only the first review's sentences
        break  # only one review

        
    # --- Testing code ---
    # scored_reviews_2017 = all_scored_reviews_df[all_scored_reviews_df["year"] == 2017]
    # print(scored_reviews_2017)
    # scored_reviews_2017 = scored_reviews_2017["scored_dict"].iloc[0]
    # # scored_reviews_2017 = ast.literal_eval(scored_reviews_2017)
    # print(type(scored_reviews_2017))
    # print(scored_reviews_2017.keys())
    # sample = scored_reviews_2017["https://openreview.net/forum?id=r1rhWnZkg"]
    # print(sample[0])
    
    # print(years)
    # for id in scored_reviews_2017.keys():
    #     print(len(scored_reviews_2017[id]))