|
import pandas as pd
|
|
from datasets import Dataset
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
|
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn import functional as F
|
|
|
|
from transformers import Trainer
|
|
|
|
|
|
|
|
train_df = pd.read_csv("./data/DISAPERE-main/SELFExtractedData/disapere_polarity_train.csv")
|
|
dev_df = pd.read_csv("./data/DISAPERE-main/SELFExtractedData/disapere_polarity_dev.csv")
|
|
test_df = pd.read_csv("./data/DISAPERE-main/SELFExtractedData/disapere_polarity_test.csv")
|
|
|
|
|
|
train_ds = Dataset.from_pandas(train_df)
|
|
dev_ds = Dataset.from_pandas(dev_df)
|
|
test_ds = Dataset.from_pandas(test_df)
|
|
|
|
|
|
model_name = "microsoft/deberta-v3-base"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
def tokenize(batch):
|
|
return tokenizer(batch["text"], padding="max_length", truncation=True, max_length=512)
|
|
|
|
train_ds = train_ds.map(tokenize, batched=True)
|
|
dev_ds = dev_ds.map(tokenize, batched=True)
|
|
test_ds = test_ds.map(tokenize, batched=True)
|
|
|
|
|
|
train_ds.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
|
dev_ds.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
|
test_ds.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
|
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)
|
|
|
|
|
|
label_counts = train_df['label'].value_counts()
|
|
total_samples = len(train_df)
|
|
class_weights = torch.tensor([total_samples / (len(label_counts) * count) for count in label_counts.sort_index().values])
|
|
class_weights = class_weights.to(dtype=torch.float32)
|
|
print("Class weights:", class_weights)
|
|
|
|
class WeightedTrainer(Trainer):
|
|
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
|
|
labels = inputs.pop("labels")
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
weights = class_weights.to(logits.device)
|
|
loss = F.cross_entropy(logits, labels, weight=weights)
|
|
return (loss, outputs) if return_outputs else loss
|
|
|
|
|
|
|
|
def compute_metrics(eval_pred):
|
|
logits, labels = eval_pred
|
|
preds = np.argmax(logits, axis=1)
|
|
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average="macro")
|
|
acc = accuracy_score(labels, preds)
|
|
return {"accuracy": acc, "f1": f1, "precision": precision, "recall": recall}
|
|
|
|
|
|
args = TrainingArguments(
|
|
output_dir="./alternative_polarity/deberta/checkpoints",
|
|
eval_strategy="epoch",
|
|
save_strategy="epoch",
|
|
learning_rate=2e-5,
|
|
per_device_train_batch_size=4,
|
|
per_device_eval_batch_size=8,
|
|
num_train_epochs=4,
|
|
weight_decay=0.01,
|
|
load_best_model_at_end=True,
|
|
metric_for_best_model="f1"
|
|
)
|
|
|
|
|
|
trainer = WeightedTrainer(
|
|
model=model,
|
|
args=args,
|
|
train_dataset=train_ds,
|
|
eval_dataset=dev_ds,
|
|
tokenizer=tokenizer,
|
|
compute_metrics=compute_metrics
|
|
)
|
|
|
|
|
|
trainer.train()
|
|
|
|
|
|
results = trainer.evaluate(test_ds)
|
|
print("Test results:", results)
|
|
|
|
|
|
model.save_pretrained("./alternative_polarity/deberta/deberta_v3_base_polarity_final_model")
|
|
tokenizer.save_pretrained("./alternative_polarity/deberta/deberta_v3_base_polarity_final_model")
|
|
|