import pandas as pd import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification from pathlib import Path import nltk from tqdm import tqdm import sys, os.path from torch.nn import functional as F nltk.download('punkt') BASE_DIR = Path(__file__).resolve().parent.parent.parent sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../../'))) from glimpse.glimpse.data_loading.Glimpse_tokenizer import glimpse_tokenizer # === CONFIGURATION === MODEL_DIR = BASE_DIR / "alternative_polarity" / "deberta" / "deberta_v3_base_polarity_final_model" DATA_DIR = BASE_DIR / "glimpse" / "data" / "processed" OUTPUT_DIR = BASE_DIR / "data" / "polarity_scored" OUTPUT_DIR.mkdir(parents=True, exist_ok=True) # === Load model and tokenizer === tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR) model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR) model.eval() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # === Tokenize like GLIMPSE === # def tokenize_sentences(text: str) -> list: # # same tokenization as in the original glimpse code # text = text.replace('-----', '\n') # sentences = nltk.sent_tokenize(text) # sentences = [sentence for sentence in sentences if sentence != ""] # return sentences # def predict_polarity(sentences): # inputs = tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device) # with torch.no_grad(): # outputs = model(**inputs) # logits = outputs.logits # temperature = 2.7 # Adjust temperature for scaling logits # probs = F.softmax(logits / temperature, dim=-1) # # Get probability of positive class # polarity_scores = probs[:, 1] # # Rescale: 0 → -1 (very negative), 1 → +1 (very positive) # polarity_scores = (polarity_scores * 2) - 1 # return polarity_scores.cpu().tolist() def predict_polarity(sentences): inputs = tokenizer( sentences, return_tensors="pt", padding=True, truncation=True, max_length=512 ).to(device) with torch.no_grad(): logits = model(**inputs).logits # (batch, 2) logit_diff = logits[:,1] - logits[:,0] alpha = 2.1 # tweak scores = torch.tanh(alpha * logit_diff) # in [-1,1] return scores.cpu().tolist() def find_polarity(start_year=2017, end_year=2021): for year in range(start_year, end_year + 1): print(f"Processing {year}...") input_path = DATA_DIR / f"all_reviews_{year}.csv" output_path = OUTPUT_DIR / f"polarity_scored_reviews_{year}.csv" df = pd.read_csv(input_path) all_rows = [] for _, row in tqdm(df.iterrows(), total=len(df)): review_id = row["id"] text = row["text"] sentences = glimpse_tokenizer(text) if not sentences: continue labels = predict_polarity(sentences) for sentence, polarity in zip(sentences, labels): all_rows.append({"id": review_id, "sentence": sentence, "polarity": polarity}) output_df = pd.DataFrame(all_rows) output_df.to_csv(output_path, index=False) print(f"Saved polarity-scored data to {output_path}") if __name__ == "__main__": find_polarity()