import pandas as pd import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification from pathlib import Path import nltk from tqdm import tqdm import sys, os.path nltk.download('punkt') BASE_DIR = Path(__file__).resolve().parent.parent.parent sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../../'))) from glimpse.glimpse.data_loading.Glimpse_tokenizer import glimpse_tokenizer # === CONFIGURATION === MODEL_DIR = BASE_DIR / "alternative_topic" / "scideberta" / "final_model" DATA_DIR = BASE_DIR / "glimpse" / "data" / "processed" OUTPUT_DIR = BASE_DIR / "data" / "topic_scored" OUTPUT_DIR.mkdir(parents=True, exist_ok=True) # === Load model and tokenizer === tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR) model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR) model.eval() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # === Tokenize like GLIMPSE === # def tokenize_sentences(text: str) -> list: # # same tokenization as in the original glimpse code # text = text.replace('-----', '\n') # sentences = nltk.sent_tokenize(text) # sentences = [sentence for sentence in sentences if sentence != ""] # return sentences # === Label map (optional: for human-readable output) === id2label = { # 0: "Evaluative", # 1: "Structuring", # 2: "Request", # 3: "Fact", # 4: "Social", # 5: "Other", 0: "Substance", 1: "Clarity", 2: "Soundness/Correctness", 3: "Originality", 4: "Motivation/Impact", 5: "Meaningful Comparison", 6: "Replicability", 7: "NONE" # This is used for sentences that do not match any specific topic } def predict_topic(sentences): inputs = tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device) with torch.no_grad(): outputs = model(**inputs) predictions = torch.argmax(outputs.logits, dim=1).cpu().tolist() # Convert predictions to human-readable labels predictions = [id2label[pred] for pred in predictions] return predictions def find_topic(start_year=2017, end_year=2021): for year in range(start_year, end_year + 1): print(f"Processing {year}...") input_path = DATA_DIR / f"all_reviews_{year}.csv" output_path = OUTPUT_DIR / f"topic_scored_reviews_{year}.csv" df = pd.read_csv(input_path) all_rows = [] for _, row in tqdm(df.iterrows(), total=len(df)): review_id = row["id"] text = row["text"] sentences = glimpse_tokenizer(text) if not sentences: continue labels = predict_topic(sentences) for sentence, topic in zip(sentences, labels): all_rows.append({"id": review_id, "sentence": sentence, "topic": topic}) output_df = pd.DataFrame(all_rows) output_df.to_csv(output_path, index=False) print(f"Saved topic-scored data to {output_path}") if __name__ == "__main__": find_topic()