Spaces:
Sleeping
Sleeping
File size: 17,135 Bytes
8464b63 6365994 8464b63 b920dbb 8464b63 b920dbb 8464b63 b920dbb 8464b63 7162e5f 8464b63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import os
import torch
import gradio as gr
import numpy as np
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoTokenizer, AutoModel
from decord import VideoReader, cpu
import tempfile
import json
from typing import List, Tuple, Optional, Union
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
MODEL_PATH = "OpenGVLab/InternVL2_5-4B"
class InternVLChatBot:
def __init__(self):
self.model = None
self.tokenizer = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.generation_config = dict(max_new_tokens=1024, do_sample=True)
self.load_model()
def load_model(self):
"""Load the InternVL model and tokenizer"""
try:
logger.info("Loading InternVL2.5-4B model...")
self.model = AutoModel.from_pretrained(
MODEL_PATH,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
use_flash_attn=False,
device_map="auto" if self.device == "cuda" else None
)
self.tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATH, trust_remote_code=True
)
logger.info("Model loaded successfully!")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise e
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
"""Find the closest aspect ratio from target ratios"""
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
"""Dynamically preprocess image based on aspect ratio"""
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# Calculate target ratios
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# Find closest aspect ratio
target_aspect_ratio = self.find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
# Calculate target dimensions
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# Resize and split image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
split_img = resized_img.crop(box)
processed_images.append(split_img)
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def build_transform(self, input_size):
"""Build image transformation pipeline"""
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
])
return transform
def load_image(self, image_path, input_size=448, max_num=12):
"""Load and preprocess image"""
if isinstance(image_path, str):
image = Image.open(image_path).convert('RGB')
else:
image = image_path.convert('RGB')
transform = self.build_transform(input_size=input_size)
images = self.dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(img) for img in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def get_index(self, bound, fps, max_frame, first_idx=0, num_segments=32):
"""Get frame indices for video processing"""
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(self, video_path, bound=None, input_size=448, max_num=1, num_segments=32):
"""Load and preprocess video"""
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
pixel_values_list, num_patches_list = [], []
transform = self.build_transform(input_size=input_size)
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
img = self.dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(tile) for tile in img]
pixel_values = torch.stack(pixel_values)
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
pixel_values = torch.cat(pixel_values_list)
return pixel_values, num_patches_list
def chat(self, message, history, image=None, video=None):
"""Main chat function"""
try:
pixel_values = None
num_patches_list = None
# Process image if provided
if image is not None:
pixel_values = self.load_image(image, max_num=12)
if self.device == "cuda":
pixel_values = pixel_values.to(torch.bfloat16).cuda()
message = f"<image>\n{message}"
# Process video if provided
elif video is not None:
pixel_values, num_patches_list = self.load_video(video, num_segments=8, max_num=1)
if self.device == "cuda":
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
message = f"{video_prefix}{message}"
# Convert history to the expected format
chat_history = []
if history:
for item in history:
if isinstance(item, dict) and "role" in item:
if item["role"] == "user":
last_user = item["content"]
elif item["role"] == "assistant":
chat_history.append((last_user, item["content"]))
# Generate response
if num_patches_list is not None:
response, new_history = self.model.chat(
self.tokenizer,
pixel_values,
message,
self.generation_config,
num_patches_list=num_patches_list,
history=chat_history,
return_history=True
)
else:
response, new_history = self.model.chat(
self.tokenizer,
pixel_values,
message,
self.generation_config,
history=chat_history,
return_history=True
)
# Update history
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return "", history, None, None
except Exception as e:
logger.error(f"Error in chat: {str(e)}")
error_msg = f"Sorry, I encountered an error: {str(e)}"
history.append([message, error_msg])
return "", history, None, None
# Initialize the chatbot
chatbot = InternVLChatBot()
# Create Gradio interface
def create_interface():
"""Create the Gradio interface"""
# Custom CSS for better styling
custom_css = """
.gradio-container {
font-family: 'Arial', sans-serif;
}
.chat-message {
padding: 10px;
margin: 5px 0;
border-radius: 10px;
}
.user-message {
background-color: #e3f2fd;
margin-left: 20px;
}
.bot-message {
background-color: #f5f5f5;
margin-right: 20px;
}
"""
with gr.Blocks(css=custom_css, title="InternVL2.5-4B Chat") as interface:
gr.Markdown("""
# π€ InternVL2.5-4B Multimodal Chat
Welcome to the InternVL2.5-4B chat interface! This AI assistant can:
- π¬ Have conversations with text
- πΌοΈ Analyze and describe images
- π₯ Process and understand videos
- π Extract text from images (OCR)
- π― Answer questions about visual content
**Instructions:**
1. Type your message in the text box
2. Optionally upload an image or video
3. Click Send to get a response
4. Use "Clear" to reset the conversation
""")
with gr.Row():
with gr.Column(scale=3):
chatbot_interface = gr.Chatbot(
label="Chat History",
height=500,
show_copy_button=True,
avatar_images=["π€", "π€"],
type="messages"
)
with gr.Row():
msg = gr.Textbox(
label="Your Message",
placeholder="Type your message here... You can ask about images, videos, or just chat!",
lines=2,
scale=4
)
send_btn = gr.Button("Send π€", scale=1, variant="primary")
with gr.Row():
clear_btn = gr.Button("Clear ποΈ", scale=1)
with gr.Column(scale=1):
gr.Markdown("### π Upload Media")
image_input = gr.Image(
label="Upload Image",
type="pil",
height=200
)
video_input = gr.Video(
label="Upload Video",
height=200
)
gr.Markdown("""
**Supported formats:**
- Images: JPG, PNG, WEBP, GIF
- Videos: MP4, AVI, MOV, WEBM
**Tips:**
- For images: Ask about content, extract text, or describe what you see
- For videos: Ask for descriptions, analysis, or specific details
- You can upload one media file at a time
""")
# Example prompts
gr.Markdown("### π‘ Example Prompts")
with gr.Row():
example_btn1 = gr.Button("π Hello, introduce yourself")
example_btn2 = gr.Button("πΌοΈ Describe this image")
example_btn3 = gr.Button("π Extract text from image")
example_btn4 = gr.Button("π₯ Analyze this video")
# Event handlers
def submit_message(message, history, image, video):
if not message.strip():
return "", history, image, video
return chatbot.chat(message, history, image, video)
def clear_chat():
return [], None, None
def set_example_prompt(prompt):
return prompt
# Wire up the interface
send_btn.click(
fn=submit_message,
inputs=[msg, chatbot_interface, image_input, video_input],
outputs=[msg, chatbot_interface, image_input, video_input]
)
msg.submit(
fn=submit_message,
inputs=[msg, chatbot_interface, image_input, video_input],
outputs=[msg, chatbot_interface, image_input, video_input]
)
clear_btn.click(
fn=clear_chat,
outputs=[chatbot_interface, image_input, video_input]
)
# Example button handlers
example_btn1.click(
fn=set_example_prompt,
inputs=[gr.State("Hello, who are you?")],
outputs=[msg]
)
example_btn2.click(
fn=set_example_prompt,
inputs=[gr.State("Please describe this image in detail.")],
outputs=[msg]
)
example_btn3.click(
fn=set_example_prompt,
inputs=[gr.State("Extract the exact text provided in the image.")],
outputs=[msg]
)
example_btn4.click(
fn=set_example_prompt,
inputs=[gr.State("Describe this video in detail.")],
outputs=[msg]
)
# Footer
gr.Markdown("""
---
**About InternVL2.5-4B:** A powerful multimodal AI model developed by Shanghai AI Lab, Tsinghua University and partners.
**API Usage:** This interface supports API calls. The chat endpoint accepts JSON with `message`, `image`, and `video` fields.
""")
return interface
# API endpoint for external integrations
def api_chat(message: str, image: Optional[str] = None, video: Optional[str] = None, history: Optional[List] = None):
"""
API endpoint for chat functionality
Args:
message: Text message
image: Base64 encoded image or image path
video: Video file path
history: Chat history as list of [user_msg, bot_msg] pairs
Returns:
Dictionary with response and updated history
"""
try:
if history is None:
history = []
# Process image if provided (handle base64 or file path)
image_obj = None
if image:
try:
if image.startswith('data:image'):
# Handle base64 image
import base64
from io import BytesIO
image_data = image.split(',')[1]
image_bytes = base64.b64decode(image_data)
image_obj = Image.open(BytesIO(image_bytes))
else:
# Handle file path
image_obj = Image.open(image)
except Exception as e:
logger.error(f"Error processing image: {str(e)}")
# Chat with the model
_, updated_history, _, _ = chatbot.chat(message, history, image_obj, video)
return {
"response": updated_history[-1][1] if updated_history else "",
"history": updated_history,
"status": "success"
}
except Exception as e:
logger.error(f"API Error: {str(e)}")
return {
"response": f"Error: {str(e)}",
"history": history,
"status": "error"
}
if __name__ == "__main__":
# Create and launch the interface
interface = create_interface()
# Launch with API access enabled
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_api=True,
)
|