import os import torch import gradio as gr import numpy as np from PIL import Image import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode from transformers import AutoTokenizer, AutoModel from decord import VideoReader, cpu import tempfile import json from typing import List, Tuple, Optional, Union import logging # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Constants IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) MODEL_PATH = "OpenGVLab/InternVL2_5-4B" class InternVLChatBot: def __init__(self): self.model = None self.tokenizer = None self.device = "cuda" if torch.cuda.is_available() else "cpu" self.generation_config = dict(max_new_tokens=1024, do_sample=True) self.load_model() def load_model(self): """Load the InternVL model and tokenizer""" try: logger.info("Loading InternVL2.5-4B model...") self.model = AutoModel.from_pretrained( MODEL_PATH, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True, use_flash_attn=False, device_map="auto" if self.device == "cuda" else None ) self.tokenizer = AutoTokenizer.from_pretrained( MODEL_PATH, trust_remote_code=True ) logger.info("Model loaded successfully!") except Exception as e: logger.error(f"Error loading model: {str(e)}") raise e def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size): """Find the closest aspect ratio from target ratios""" best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): """Dynamically preprocess image based on aspect ratio""" orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # Calculate target ratios target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num ) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # Find closest aspect ratio target_aspect_ratio = self.find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size ) # Calculate target dimensions target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # Resize and split image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) split_img = resized_img.crop(box) processed_images.append(split_img) if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def build_transform(self, input_size): """Build image transformation pipeline""" transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD) ]) return transform def load_image(self, image_path, input_size=448, max_num=12): """Load and preprocess image""" if isinstance(image_path, str): image = Image.open(image_path).convert('RGB') else: image = image_path.convert('RGB') transform = self.build_transform(input_size=input_size) images = self.dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(img) for img in images] pixel_values = torch.stack(pixel_values) return pixel_values def get_index(self, bound, fps, max_frame, first_idx=0, num_segments=32): """Get frame indices for video processing""" if bound: start, end = bound[0], bound[1] else: start, end = -100000, 100000 start_idx = max(first_idx, round(start * fps)) end_idx = min(round(end * fps), max_frame) seg_size = float(end_idx - start_idx) / num_segments frame_indices = np.array([ int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments) ]) return frame_indices def load_video(self, video_path, bound=None, input_size=448, max_num=1, num_segments=32): """Load and preprocess video""" vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) max_frame = len(vr) - 1 fps = float(vr.get_avg_fps()) pixel_values_list, num_patches_list = [], [] transform = self.build_transform(input_size=input_size) frame_indices = self.get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) for frame_index in frame_indices: img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB') img = self.dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(tile) for tile in img] pixel_values = torch.stack(pixel_values) num_patches_list.append(pixel_values.shape[0]) pixel_values_list.append(pixel_values) pixel_values = torch.cat(pixel_values_list) return pixel_values, num_patches_list def chat(self, message, history, image=None, video=None): """Main chat function""" try: pixel_values = None num_patches_list = None # Process image if provided if image is not None: pixel_values = self.load_image(image, max_num=12) if self.device == "cuda": pixel_values = pixel_values.to(torch.bfloat16).cuda() message = f"\n{message}" # Process video if provided elif video is not None: pixel_values, num_patches_list = self.load_video(video, num_segments=8, max_num=1) if self.device == "cuda": pixel_values = pixel_values.to(torch.bfloat16).cuda() video_prefix = ''.join([f'Frame{i+1}: \n' for i in range(len(num_patches_list))]) message = f"{video_prefix}{message}" # Convert history to the expected format chat_history = [] if history: for item in history: if isinstance(item, dict) and "role" in item: if item["role"] == "user": last_user = item["content"] elif item["role"] == "assistant": chat_history.append((last_user, item["content"])) # Generate response if num_patches_list is not None: response, new_history = self.model.chat( self.tokenizer, pixel_values, message, self.generation_config, num_patches_list=num_patches_list, history=chat_history, return_history=True ) else: response, new_history = self.model.chat( self.tokenizer, pixel_values, message, self.generation_config, history=chat_history, return_history=True ) # Update history history.append({"role": "user", "content": message}) history.append({"role": "assistant", "content": response}) return "", history, None, None except Exception as e: logger.error(f"Error in chat: {str(e)}") error_msg = f"Sorry, I encountered an error: {str(e)}" history.append([message, error_msg]) return "", history, None, None # Initialize the chatbot chatbot = InternVLChatBot() # Create Gradio interface def create_interface(): """Create the Gradio interface""" # Custom CSS for better styling custom_css = """ .gradio-container { font-family: 'Arial', sans-serif; } .chat-message { padding: 10px; margin: 5px 0; border-radius: 10px; } .user-message { background-color: #e3f2fd; margin-left: 20px; } .bot-message { background-color: #f5f5f5; margin-right: 20px; } """ with gr.Blocks(css=custom_css, title="InternVL2.5-4B Chat") as interface: gr.Markdown(""" # 🤖 InternVL2.5-4B Multimodal Chat Welcome to the InternVL2.5-4B chat interface! This AI assistant can: - 💬 Have conversations with text - 🖼️ Analyze and describe images - 🎥 Process and understand videos - 📝 Extract text from images (OCR) - 🎯 Answer questions about visual content **Instructions:** 1. Type your message in the text box 2. Optionally upload an image or video 3. Click Send to get a response 4. Use "Clear" to reset the conversation """) with gr.Row(): with gr.Column(scale=3): chatbot_interface = gr.Chatbot( label="Chat History", height=500, show_copy_button=True, avatar_images=["👤", "🤖"], type="messages" ) with gr.Row(): msg = gr.Textbox( label="Your Message", placeholder="Type your message here... You can ask about images, videos, or just chat!", lines=2, scale=4 ) send_btn = gr.Button("Send 📤", scale=1, variant="primary") with gr.Row(): clear_btn = gr.Button("Clear 🗑️", scale=1) with gr.Column(scale=1): gr.Markdown("### 📎 Upload Media") image_input = gr.Image( label="Upload Image", type="pil", height=200 ) video_input = gr.Video( label="Upload Video", height=200 ) gr.Markdown(""" **Supported formats:** - Images: JPG, PNG, WEBP, GIF - Videos: MP4, AVI, MOV, WEBM **Tips:** - For images: Ask about content, extract text, or describe what you see - For videos: Ask for descriptions, analysis, or specific details - You can upload one media file at a time """) # Example prompts gr.Markdown("### 💡 Example Prompts") with gr.Row(): example_btn1 = gr.Button("👋 Hello, introduce yourself") example_btn2 = gr.Button("🖼️ Describe this image") example_btn3 = gr.Button("📝 Extract text from image") example_btn4 = gr.Button("🎥 Analyze this video") # Event handlers def submit_message(message, history, image, video): if not message.strip(): return "", history, image, video return chatbot.chat(message, history, image, video) def clear_chat(): return [], None, None def set_example_prompt(prompt): return prompt # Wire up the interface send_btn.click( fn=submit_message, inputs=[msg, chatbot_interface, image_input, video_input], outputs=[msg, chatbot_interface, image_input, video_input] ) msg.submit( fn=submit_message, inputs=[msg, chatbot_interface, image_input, video_input], outputs=[msg, chatbot_interface, image_input, video_input] ) clear_btn.click( fn=clear_chat, outputs=[chatbot_interface, image_input, video_input] ) # Example button handlers example_btn1.click( fn=set_example_prompt, inputs=[gr.State("Hello, who are you?")], outputs=[msg] ) example_btn2.click( fn=set_example_prompt, inputs=[gr.State("Please describe this image in detail.")], outputs=[msg] ) example_btn3.click( fn=set_example_prompt, inputs=[gr.State("Extract the exact text provided in the image.")], outputs=[msg] ) example_btn4.click( fn=set_example_prompt, inputs=[gr.State("Describe this video in detail.")], outputs=[msg] ) # Footer gr.Markdown(""" --- **About InternVL2.5-4B:** A powerful multimodal AI model developed by Shanghai AI Lab, Tsinghua University and partners. **API Usage:** This interface supports API calls. The chat endpoint accepts JSON with `message`, `image`, and `video` fields. """) return interface # API endpoint for external integrations def api_chat(message: str, image: Optional[str] = None, video: Optional[str] = None, history: Optional[List] = None): """ API endpoint for chat functionality Args: message: Text message image: Base64 encoded image or image path video: Video file path history: Chat history as list of [user_msg, bot_msg] pairs Returns: Dictionary with response and updated history """ try: if history is None: history = [] # Process image if provided (handle base64 or file path) image_obj = None if image: try: if image.startswith('data:image'): # Handle base64 image import base64 from io import BytesIO image_data = image.split(',')[1] image_bytes = base64.b64decode(image_data) image_obj = Image.open(BytesIO(image_bytes)) else: # Handle file path image_obj = Image.open(image) except Exception as e: logger.error(f"Error processing image: {str(e)}") # Chat with the model _, updated_history, _, _ = chatbot.chat(message, history, image_obj, video) return { "response": updated_history[-1][1] if updated_history else "", "history": updated_history, "status": "success" } except Exception as e: logger.error(f"API Error: {str(e)}") return { "response": f"Error: {str(e)}", "history": history, "status": "error" } if __name__ == "__main__": # Create and launch the interface interface = create_interface() # Launch with API access enabled interface.launch( server_name="0.0.0.0", server_port=7860, share=True, show_api=True, )