Spaces:
Runtime error
Runtime error
File size: 2,100 Bytes
7166b9d 9a6b3b4 7166b9d 9a6b3b4 cc25ca0 7166b9d b8408d1 cc25ca0 9a6b3b4 7166b9d b8408d1 9a6b3b4 b8408d1 7166b9d 9a6b3b4 7166b9d 9a6b3b4 7166b9d 9a6b3b4 b8408d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Optional
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
app = FastAPI()
# โหลดโมเดลและ tokenizer
model_name = "scb10x/llama-3-typhoon-v1.5-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# ตรวจสอบว่ามี GPU หรือไม่
device = "cuda" if torch.cuda.is_available() else "cpu"
# โหลดโมเดลด้วยการตั้งค่าที่เหมาะสม
if device == "cuda":
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
low_cpu_mem_usage=True
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32,
low_cpu_mem_usage=True
)
model.to(device)
class Query(BaseModel):
queryResult: Optional[dict] = None
queryText: Optional[str] = None
@app.post("/webhook")
async def webhook(query: Query):
try:
user_query = query.queryResult.get('queryText') if query.queryResult else query.queryText
if not user_query:
raise HTTPException(status_code=400, detail="No query text provided")
# สร้าง prompt และ generate ข้อความ
prompt = f"Human: {user_query}\nAI:"
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
with torch.no_grad():
output = model.generate(input_ids, max_new_tokens=100, temperature=0.7)
response = tokenizer.decode(output[0], skip_special_tokens=True)
# แยกส่วนที่เป็นคำตอบของ AI
ai_response = response.split("AI:")[-1].strip()
return {"fulfillmentText": ai_response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |