Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import streamlit as st | |
# Load the text generation pipeline | |
pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B") | |
def generate_blog(topic, no_words): | |
# Create the prompt | |
prompt = f"Write a blog on the topic '{topic}' within {no_words} words." | |
# Generate the blog content | |
result = pipe(prompt, max_length=int(no_words), num_return_sequences=1) | |
# Extract the generated text | |
blog_content = result[0]['generated_text'] | |
return blog_content | |
# Streamlit app | |
st.set_page_config(page_title="Blog Generator", page_icon="π") | |
st.title("Blog Content Generator π") | |
# Input fields | |
topic = st.text_input("Enter the Blog Topic") | |
no_words = st.number_input("Enter the Number of Words", min_value=50, max_value=1000, value=200, step=50) | |
if st.button("Generate Blog"): | |
if topic and no_words: | |
with st.spinner("Generating blog content..."): | |
blog_content = generate_blog(topic, no_words) | |
st.subheader("Generated Blog Content") | |
st.write(blog_content) | |
else: | |
st.error("Please provide both the blog topic and the number of words.") | |