Spaces:
Sleeping
Sleeping
Commit
·
95f55b3
1
Parent(s):
19ca13a
修改流程顺序,看看效果
Browse files
app.py
CHANGED
@@ -210,7 +210,7 @@ def app():
|
|
210 |
with st.sidebar:
|
211 |
st.image("https://siyuan-harry.oss-cn-beijing.aliyuncs.com/oss://siyuan-harry/20231021212525.png")
|
212 |
added_files = st.file_uploader('Upload .md file', type=['.md'], accept_multiple_files=True)
|
213 |
-
num_lessons = st.slider('How many lessons do you want this course to have?', min_value=5, max_value=
|
214 |
language = 'English'
|
215 |
Chinese = st.checkbox('Output in Chinese')
|
216 |
if Chinese:
|
@@ -218,87 +218,88 @@ def app():
|
|
218 |
btn = st.button('submit')
|
219 |
|
220 |
|
221 |
-
col1, col2 = st.columns([0.6,0.4]
|
222 |
|
223 |
if btn:
|
224 |
temp_file_paths = []
|
225 |
-
|
226 |
for added_file in added_files:
|
227 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".md") as tmp:
|
228 |
tmp.write(added_file.getvalue())
|
229 |
tmp_path = tmp.name
|
230 |
temp_file_paths.append(tmp_path)
|
231 |
-
|
232 |
|
233 |
-
|
234 |
-
course_outline_list = courseOutlineGenerating(temp_file_paths, num_lessons, language)
|
235 |
-
col1.outline_generating_state.text("Generating Course Oueline...Done")
|
236 |
-
|
237 |
-
#把课程大纲打印出来
|
238 |
-
course_outline_string = ''
|
239 |
-
lessons_count = 0
|
240 |
-
for outline in course_outline_list:
|
241 |
-
lessons_count += 1
|
242 |
-
course_outline_string += f"{lessons_count}." + outline[0] + '\n'
|
243 |
-
course_outline_string += '\n' + outline[1] + '\n\n'
|
244 |
-
#time.sleep(1)
|
245 |
-
with col1.st.expander("Check the course outline", expanded=False):
|
246 |
-
st.write(course_outline_string)
|
247 |
-
|
248 |
-
col1.vdb_state = st.text("Constructing vector database from provided materials...")
|
249 |
embeddings_df, faiss_index = constructVDB(temp_file_paths)
|
250 |
-
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
prompt = decorate_user_question(user_question, retrieved_chunks_for_user)
|
286 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
287 |
-
with st.chat_message("user"):
|
288 |
-
st.markdown(user_question)
|
289 |
-
# Display assistant response in chat message container
|
290 |
with st.chat_message("assistant"):
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
|
304 |
if __name__ == "__main__":
|
|
|
210 |
with st.sidebar:
|
211 |
st.image("https://siyuan-harry.oss-cn-beijing.aliyuncs.com/oss://siyuan-harry/20231021212525.png")
|
212 |
added_files = st.file_uploader('Upload .md file', type=['.md'], accept_multiple_files=True)
|
213 |
+
num_lessons = st.slider('How many lessons do you want this course to have?', min_value=5, max_value=19, value=10, step=1)
|
214 |
language = 'English'
|
215 |
Chinese = st.checkbox('Output in Chinese')
|
216 |
if Chinese:
|
|
|
218 |
btn = st.button('submit')
|
219 |
|
220 |
|
221 |
+
col1, col2 = st.columns([0.6,0.4])
|
222 |
|
223 |
if btn:
|
224 |
temp_file_paths = []
|
225 |
+
file_proc_state = st.text("Processing file...")
|
226 |
for added_file in added_files:
|
227 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".md") as tmp:
|
228 |
tmp.write(added_file.getvalue())
|
229 |
tmp_path = tmp.name
|
230 |
temp_file_paths.append(tmp_path)
|
231 |
+
file_proc_state.text("Processing file...Done")
|
232 |
|
233 |
+
vdb_state = st.text("Constructing vector database from provided materials...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
embeddings_df, faiss_index = constructVDB(temp_file_paths)
|
235 |
+
vdb_state.text("Constructing vector database from provided materials...Done")
|
236 |
|
237 |
+
outline_generating_state = st.text("Generating Course Oueline...")
|
238 |
+
course_outline_list = courseOutlineGenerating(temp_file_paths, num_lessons, language)
|
239 |
+
outline_generating_state.text("Generating Course Oueline...Done")
|
240 |
+
|
241 |
+
with col1:
|
242 |
+
#把课程大纲打印出来
|
243 |
+
course_outline_string = ''
|
244 |
+
lessons_count = 0
|
245 |
+
for outline in course_outline_list:
|
246 |
+
lessons_count += 1
|
247 |
+
course_outline_string += f"{lessons_count}." + outline[0] + '\n'
|
248 |
+
course_outline_string += '\n' + outline[1] + '\n\n'
|
249 |
+
#time.sleep(1)
|
250 |
+
with st.expander("Check the course outline", expanded=False):
|
251 |
+
st.write(course_outline_string)
|
252 |
+
|
253 |
+
count_generating_content = 0
|
254 |
+
for lesson in course_outline_list:
|
255 |
+
count_generating_content += 1
|
256 |
+
content_generating_state = st.text(f"Writing content for lesson {count_generating_content}...")
|
257 |
+
retrievedChunksList = searchVDB(lesson, embeddings_df, faiss_index)
|
258 |
+
courseContent = generateCourse(lesson, retrievedChunksList, language)
|
259 |
+
content_generating_state.text(f"Writing content for lesson {count_generating_content}...Done")
|
260 |
+
#st.text_area("Course Content", value=courseContent)
|
261 |
+
with st.expander(f"Learn the lesson {count_generating_content} ", expanded=False):
|
262 |
+
st.markdown(courseContent)
|
263 |
+
|
264 |
+
user_question = st.chat_input("Enter your questions when learning...")
|
265 |
+
|
266 |
+
with col2:
|
267 |
+
st.caption(''':blue[AI Assistant]: Ask this TA any questions related to this course and get direct answers. :sunglasses:''')
|
268 |
+
# Set a default model
|
269 |
+
|
|
|
|
|
|
|
|
|
|
|
270 |
with st.chat_message("assistant"):
|
271 |
+
st.write("Hello👋, how can I help you today? 😄")
|
272 |
+
if "openai_model" not in st.session_state:
|
273 |
+
st.session_state["openai_model"] = "gpt-3.5-turbo"
|
274 |
+
|
275 |
+
# Initialize chat history
|
276 |
+
if "messages" not in st.session_state:
|
277 |
+
st.session_state.messages = []
|
278 |
+
|
279 |
+
# Display chat messages from history on app rerun
|
280 |
+
for message in st.session_state.messages:
|
281 |
+
with st.chat_message(message["role"]):
|
282 |
+
st.markdown(message["content"])
|
283 |
+
#这里的session.state就是保存了这个对话会话的一些基本信息和设置
|
284 |
+
if user_question:
|
285 |
+
retrieved_chunks_for_user = searchVDB(user_question, embeddings_df, faiss_index)
|
286 |
+
prompt = decorate_user_question(user_question, retrieved_chunks_for_user)
|
287 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
288 |
+
with st.chat_message("user"):
|
289 |
+
st.markdown(user_question)
|
290 |
+
# Display assistant response in chat message container
|
291 |
+
with st.chat_message("assistant"):
|
292 |
+
message_placeholder = st.empty()
|
293 |
+
full_response = ""
|
294 |
+
for response in openai.ChatCompletion.create(
|
295 |
+
model=st.session_state["openai_model"],
|
296 |
+
messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages],
|
297 |
+
stream=True,
|
298 |
+
):
|
299 |
+
full_response += response.choices[0].delta.get("content", "")
|
300 |
+
message_placeholder.markdown(full_response + "▌")
|
301 |
+
message_placeholder.markdown(full_response)
|
302 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
303 |
|
304 |
|
305 |
if __name__ == "__main__":
|