File size: 1,038 Bytes
65602f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import torch.nn as nn
from torchvision import models,transforms
from PIL import Image
import gradio as gr
from torchvision.transforms import transforms


# model=models.resnet18(pretrained=True)
# model.fc=nn.Linear(model.fc.in_features,10)
t=transforms.Compose([  transforms.ToTensor(),
                        transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5)),
                        transforms.RandomHorizontalFlip(0.5),
                        transforms.RandomRotation(10),
                        ])
class_name=[f"c{i}" for i in range(1,10)]

model=torch.load("model.pth")
print(model)
def predict(image):
    image=t(image).unsqueeze(0)
    with torch.no_grad():
        output=model(image)
        _,predicted=torch.max(output,1)
        predicted_class=predicted.item()
        return predicted_class

interface=gr.Interface(
    fn=predict,
    inputs=gr.Image(type="pil"),
    outputs="text",
    title="cifar dataset prediction",
    description="upload an image to get its class"
)

interface.launch(share=True)