SkullFaceFire commited on
Commit
3604a15
·
verified ·
1 Parent(s): a291d92

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -33
app.py CHANGED
@@ -1,34 +1,34 @@
1
- import tensorflow as tf
2
- from tensorflow.keras.layers import TextVectorization,LSTM
3
- import gradio as gr
4
- import pandas as pd
5
- import os
6
-
7
- df = pd.read_csv(os.path.join('jigsaw-toxic-comment-classification-challenge','train.csv', 'train.csv'))
8
-
9
- MAX_FEATURES = 200000
10
-
11
- vectorizer = TextVectorization(max_tokens=MAX_FEATURES,
12
- output_sequence_length=1800,
13
- output_mode='int')
14
-
15
- # Adapt the vectorizer to the training data
16
- vectorizer.adapt(df['comment_text'].values)
17
-
18
- model = tf.keras.models.load_model('toxicity.keras')
19
-
20
- def score_comment(comment):
21
- vectorized_comment = vectorizer([comment])
22
- results = model.predict(vectorized_comment)
23
-
24
- text = ''
25
- for idx, col in enumerate(df.columns[2:]):
26
- text += '{}: {}\n'.format(col, results[0][idx]>0.5)
27
-
28
- return text
29
-
30
- interface = gr.Interface(fn=score_comment,
31
- inputs=gr.Textbox(lines=2, placeholder='Comment to score'),
32
- outputs='text')
33
-
34
  interface.launch(share=True)
 
1
+ import tensorflow as tf
2
+ from tensorflow.keras.layers import TextVectorization,LSTM
3
+ import gradio as gr
4
+ import pandas as pd
5
+ import os
6
+
7
+ df = pd.read_csv('train.csv')
8
+
9
+ MAX_FEATURES = 200000
10
+
11
+ vectorizer = TextVectorization(max_tokens=MAX_FEATURES,
12
+ output_sequence_length=1800,
13
+ output_mode='int')
14
+
15
+ # Adapt the vectorizer to the training data
16
+ vectorizer.adapt(df['comment_text'].values)
17
+
18
+ model = tf.keras.models.load_model('toxicity.keras')
19
+
20
+ def score_comment(comment):
21
+ vectorized_comment = vectorizer([comment])
22
+ results = model.predict(vectorized_comment)
23
+
24
+ text = ''
25
+ for idx, col in enumerate(df.columns[2:]):
26
+ text += '{}: {}\n'.format(col, results[0][idx]>0.5)
27
+
28
+ return text
29
+
30
+ interface = gr.Interface(fn=score_comment,
31
+ inputs=gr.Textbox(lines=2, placeholder='Comment to score'),
32
+ outputs='text')
33
+
34
  interface.launch(share=True)