import tensorflow as tf from tensorflow.keras.layers import TextVectorization,LSTM import gradio as gr import pandas as pd import os df = pd.read_csv('train.csv') MAX_FEATURES = 200000 vectorizer = TextVectorization(max_tokens=MAX_FEATURES, output_sequence_length=1800, output_mode='int') # Adapt the vectorizer to the training data vectorizer.adapt(df['comment_text'].values) model = tf.keras.models.load_model('toxicity.keras') def score_comment(comment): vectorized_comment = vectorizer([comment]) results = model.predict(vectorized_comment) text = '' for idx, col in enumerate(df.columns[2:]): text += '{}: {}\n'.format(col, results[0][idx]>0.5) return text interface = gr.Interface(fn=score_comment, inputs=gr.Textbox(lines=2, placeholder='Comment to score'), outputs='text') interface.launch(share=True)