Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification | |
models = ["bert-base-uncased", "model2"] | |
datasets = ["vedantgaur/GPTOutputs-MWP", "dataset2"] | |
# Mapping of user-selected model and dataset to actual model name on Hugging Face | |
model_mapping = { | |
("bert-base-uncased", "vedantgaur/GPTOutputs-MWP"): "SkwarczynskiP/bert-base-uncased-finetuned-vedantgaur", | |
("bert-base-uncased", "dataset2"): "finetuned_model1_on_dataset2", | |
("model2", "vedantgaur/GPTOutputs-MWP"): "finetuned_model2_on_dataset1", | |
("model2", "dataset2"): "finetuned_model2_on_dataset2", | |
} | |
def detect_ai_generated_text(model: str, dataset: str, text: str) -> str: | |
# Get the fine-tuned model using mapping | |
finetuned_model = model_mapping.get((model, dataset)) | |
# Load the specific fine-tuned model | |
tokenizer = AutoTokenizer.from_pretrained(finetuned_model) | |
model = AutoModelForSequenceClassification.from_pretrained(finetuned_model) | |
# Classify the input based on the fine-tuned model | |
classifier = pipeline('text-classification', model=model, tokenizer=tokenizer) | |
result = classifier(text) | |
return "AI-generated" if result[0]['label'] == 'LABEL_1' else "Not AI-generated" | |
iface = gr.Interface( | |
fn=detect_ai_generated_text, | |
inputs=[ | |
gr.Dropdown(choices=models, label="Model"), | |
gr.Dropdown(choices=datasets, label="Dataset"), | |
gr.Textbox(lines=5, label="Input Text") | |
], | |
outputs=gr.Textbox(label="Output"), | |
) | |
iface.launch() |