SkwarczynskiP's picture
Added in more finetuned models
94028a4 verified
raw
history blame
2.7 kB
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
models = ["bert-base-uncased", "roberta-base"]
datasets = ["None",
"vedantgaur/GPTOutputs-MWP - AI Data Only",
"vedantgaur/GPTOutputs-MWP - Human Data Only",
"vedantgaur/GPTOutputs-MWP - Both AI and Human Data",
"dmitva/human_ai_generated_text - Both AI and Human Data"]
# Mapping of user-selected model and dataset to actual model name on Hugging Face
model_mapping = {
("bert-base-uncased", "None"): "bert-base-uncased",
("bert-base-uncased", "vedantgaur/GPTOutputs-MWP - AI Data Only"): "SkwarczynskiP/bert-base-uncased-finetuned-vedantgaur-AI-generated",
("bert-base-uncased", "vedantgaur/GPTOutputs-MWP - Human Data Only"): "SkwarczynskiP/bert-base-uncased-finetuned-vedantgaur-human-generated",
("bert-base-uncased", "vedantgaur/GPTOutputs-MWP - Both AI and Human Data"): "SkwarczynskiP/bert-base-uncased-finetuned-vedantgaur-AI-and-human-generated",
("bert-base-uncased", "dmitva/human_ai_generated_text"): "SkwarczynskiP/bert-base-uncased-finetuned-dmitva-AI-and-human-generated",
("roberta-base", "None"): "roberta-base",
("roberta-base", "vedantgaur/GPTOutputs-MWP - AI Data Only"): "SkwarczynskiP/roberta-base-finetuned-vedantgaur-AI-generated",
("roberta-base", "vedantgaur/GPTOutputs-MWP - Human Data Only"): "SkwarczynskiP/roberta-base-finetuned-vedantgaur-human-generated",
("roberta-base", "vedantgaur/GPTOutputs-MWP - Both AI and Human Data"): "SkwarczynskiP/roberta-base-finetuned-vedantgaur-AI-and-human-generated",
("roberta-base", "dmitva/human_ai_generated_text"): "SkwarczynskiP/roberta-base-finetuned-dmitva-AI-and-human-generated"
}
def detect_ai_generated_text(model: str, dataset: str, text: str) -> str:
# Get the fine-tuned model using mapping
finetuned_model = model_mapping.get((model, dataset))
# Load the specific fine-tuned model
tokenizer = AutoTokenizer.from_pretrained(finetuned_model)
model = AutoModelForSequenceClassification.from_pretrained(finetuned_model)
# Classify the input based on the fine-tuned model
classifier = pipeline('text-classification', model=model, tokenizer=tokenizer)
result = classifier(text)
return "AI-generated" if result[0]['label'] == 'LABEL_1' else "Not AI-generated"
interface = gr.Interface(
fn=detect_ai_generated_text,
inputs=[
gr.Dropdown(choices=models, label="Model"),
gr.Dropdown(choices=datasets, label="Dataset"),
gr.Textbox(lines=5, label="Input Text")
],
outputs=gr.Textbox(label="Output")
)
if __name__ == "__main__":
interface.launch()