Spaces:
Runtime error
Runtime error
Updated GUI
Browse files
app.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
|
|
|
4 |
models = ["bert-base-uncased", "roberta-base"]
|
5 |
-
|
|
|
|
|
6 |
"vedantgaur/GPTOutputs-MWP - AI Data Only",
|
7 |
"vedantgaur/GPTOutputs-MWP - Human Data Only",
|
8 |
"vedantgaur/GPTOutputs-MWP - Both AI and Human Data",
|
@@ -22,6 +25,7 @@ model_mapping = {
|
|
22 |
("roberta-base", "dmitva/human_ai_generated_text - Both AI and Human Data"): "SkwarczynskiP/roberta-base-finetuned-dmitva-AI-and-human-generated"
|
23 |
}
|
24 |
|
|
|
25 |
def detect_ai_generated_text(model: str, dataset: str, text: str) -> str:
|
26 |
# Get the fine-tuned model using mapping
|
27 |
finetuned_model = model_mapping.get((model, dataset))
|
@@ -33,7 +37,21 @@ def detect_ai_generated_text(model: str, dataset: str, text: str) -> str:
|
|
33 |
# Classify the input based on the fine-tuned model
|
34 |
classifier = pipeline('text-classification', model=model, tokenizer=tokenizer)
|
35 |
result = classifier(text)
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
interface = gr.Interface(
|
39 |
fn=detect_ai_generated_text,
|
@@ -42,7 +60,9 @@ interface = gr.Interface(
|
|
42 |
gr.Dropdown(choices=datasets, label="Dataset"),
|
43 |
gr.Textbox(lines=5, label="Input Text")
|
44 |
],
|
45 |
-
outputs=gr.Textbox(label="Output")
|
|
|
|
|
46 |
)
|
47 |
|
48 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
|
4 |
+
# Models included within the interface
|
5 |
models = ["bert-base-uncased", "roberta-base"]
|
6 |
+
|
7 |
+
# Datasets included within the interface
|
8 |
+
datasets = ["None",
|
9 |
"vedantgaur/GPTOutputs-MWP - AI Data Only",
|
10 |
"vedantgaur/GPTOutputs-MWP - Human Data Only",
|
11 |
"vedantgaur/GPTOutputs-MWP - Both AI and Human Data",
|
|
|
25 |
("roberta-base", "dmitva/human_ai_generated_text - Both AI and Human Data"): "SkwarczynskiP/roberta-base-finetuned-dmitva-AI-and-human-generated"
|
26 |
}
|
27 |
|
28 |
+
|
29 |
def detect_ai_generated_text(model: str, dataset: str, text: str) -> str:
|
30 |
# Get the fine-tuned model using mapping
|
31 |
finetuned_model = model_mapping.get((model, dataset))
|
|
|
37 |
# Classify the input based on the fine-tuned model
|
38 |
classifier = pipeline('text-classification', model=model, tokenizer=tokenizer)
|
39 |
result = classifier(text)
|
40 |
+
|
41 |
+
# Get the label and score
|
42 |
+
label = "AI-generated" if result[0]['label'] == 'LABEL_1' else "Human-written"
|
43 |
+
score = result[0]['score']
|
44 |
+
|
45 |
+
return f"{label} with confidence {score * 100:.2f}%"
|
46 |
+
|
47 |
+
|
48 |
+
# Examples included within the interface
|
49 |
+
examples = [
|
50 |
+
["AI Generated", ""],
|
51 |
+
["Human Written", ""],
|
52 |
+
["AI Generated", ""],
|
53 |
+
["Human Written", ""]
|
54 |
+
]
|
55 |
|
56 |
interface = gr.Interface(
|
57 |
fn=detect_ai_generated_text,
|
|
|
60 |
gr.Dropdown(choices=datasets, label="Dataset"),
|
61 |
gr.Textbox(lines=5, label="Input Text")
|
62 |
],
|
63 |
+
outputs=gr.Textbox(label="Output"),
|
64 |
+
examples=examples,
|
65 |
+
title="AI Generated Text Detection",
|
66 |
)
|
67 |
|
68 |
if __name__ == "__main__":
|