import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification # Models included within the interface models = ["bert-base-uncased", "roberta-base"] # Datasets included within the interface datasets = ["No Dataset Finetuning", "vedantgaur/GPTOutputs-MWP - AI Data Only", "vedantgaur/GPTOutputs-MWP - Human Data Only", "vedantgaur/GPTOutputs-MWP - Both AI and Human Data", "dmitva/human_ai_generated_text - Both AI and Human Data"] # Mapping of user-selected model and dataset to actual model name on Hugging Face model_mapping = { ("bert-base-uncased", "No Dataset Finetuning"): "bert-base-uncased", ("bert-base-uncased", "vedantgaur/GPTOutputs-MWP - AI Data Only"): "SkwarczynskiP/bert-base-uncased-finetuned-vedantgaur-AI-generated", ("bert-base-uncased", "vedantgaur/GPTOutputs-MWP - Human Data Only"): "SkwarczynskiP/bert-base-uncased-finetuned-vedantgaur-human-generated", ("bert-base-uncased", "vedantgaur/GPTOutputs-MWP - Both AI and Human Data"): "SkwarczynskiP/bert-base-uncased-finetuned-vedantgaur-AI-and-human-generated", ("bert-base-uncased", "dmitva/human_ai_generated_text - Both AI and Human Data"): "SkwarczynskiP/bert-base-uncased-finetuned-dmitva-AI-and-human-generated", ("roberta-base", "No Dataset Finetuning"): "roberta-base", ("roberta-base", "vedantgaur/GPTOutputs-MWP - AI Data Only"): "SkwarczynskiP/roberta-base-finetuned-vedantgaur-AI-generated", ("roberta-base", "vedantgaur/GPTOutputs-MWP - Human Data Only"): "SkwarczynskiP/roberta-base-finetuned-vedantgaur-human-generated", ("roberta-base", "vedantgaur/GPTOutputs-MWP - Both AI and Human Data"): "SkwarczynskiP/roberta-base-finetuned-vedantgaur-AI-and-human-generated", ("roberta-base", "dmitva/human_ai_generated_text - Both AI and Human Data"): "SkwarczynskiP/roberta-base-finetuned-dmitva-AI-and-human-generated" } # Examples included within the interface examples = [ ["ex1"], ["ex2"], ["ex3"], ["ex4"] ] def detect_ai_generated_text(model: str, dataset: str, text: str) -> str: # Get the fine-tuned model using mapping finetuned_model = model_mapping.get((model, dataset)) # Load the specific fine-tuned model tokenizer = AutoTokenizer.from_pretrained(finetuned_model) model = AutoModelForSequenceClassification.from_pretrained(finetuned_model) # Classify the input based on the fine-tuned model classifier = pipeline('text-classification', model=model, tokenizer=tokenizer) result = classifier(text) # Get the label and score label = "AI-generated" if result[0]['label'] == 'LABEL_1' else "Human-written" score = result[0]['score'] return f"{label} with confidence {score * 100:.2f}%" interface = gr.Interface( fn=detect_ai_generated_text, inputs=[ gr.Dropdown(choices=models, label="Model"), gr.Dropdown(choices=datasets, label="Dataset"), gr.Textbox(lines=5, label="Input Text") ], outputs=gr.Textbox(label="Output"), examples=examples, title="AI Generated Text Detection" ) if __name__ == "__main__": interface.launch()