import gradio as gr import random from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification # Models included within the interface models = ["bert-base-uncased", "roberta-base"] # Datasets included within the interface datasets = ["No Dataset Finetuning", "vedantgaur/GPTOutputs-MWP - AI Data Only", "vedantgaur/GPTOutputs-MWP - Human Data Only", "vedantgaur/GPTOutputs-MWP - Both AI and Human Data", "dmitva/human_ai_generated_text - Both AI and Human Data"] # Mapping of user-selected model and dataset to actual model name on Hugging Face model_mapping = { ("bert-base-uncased", "No Dataset Finetuning"): "bert-base-uncased", ("bert-base-uncased", "vedantgaur/GPTOutputs-MWP - AI Data Only"): "SkwarczynskiP/bert-base-uncased-finetuned-vedantgaur-AI-generated", ("bert-base-uncased", "vedantgaur/GPTOutputs-MWP - Human Data Only"): "SkwarczynskiP/bert-base-uncased-finetuned-vedantgaur-human-generated", ("bert-base-uncased", "vedantgaur/GPTOutputs-MWP - Both AI and Human Data"): "SkwarczynskiP/bert-base-uncased-finetuned-vedantgaur-AI-and-human-generated", ("bert-base-uncased", "dmitva/human_ai_generated_text - Both AI and Human Data"): "SkwarczynskiP/bert-base-uncased-finetuned-dmitva-AI-and-human-generated", ("roberta-base", "No Dataset Finetuning"): "roberta-base", ("roberta-base", "vedantgaur/GPTOutputs-MWP - AI Data Only"): "SkwarczynskiP/roberta-base-finetuned-vedantgaur-AI-generated", ("roberta-base", "vedantgaur/GPTOutputs-MWP - Human Data Only"): "SkwarczynskiP/roberta-base-finetuned-vedantgaur-human-generated", ("roberta-base", "vedantgaur/GPTOutputs-MWP - Both AI and Human Data"): "SkwarczynskiP/roberta-base-finetuned-vedantgaur-AI-and-human-generated", ("roberta-base", "dmitva/human_ai_generated_text - Both AI and Human Data"): "SkwarczynskiP/roberta-base-finetuned-dmitva-AI-and-human-generated" } # Example text included within the interface exampleText = [ "ex1", "ex2", "ex3", "ex4" ] # Example models and datasets included within the interface exampleModels = ["bert-base-uncased", "roberta-base"] # Example datasets included within the interface exampleDatasets = ["No Dataset Finetuning", "vedantgaur/GPTOutputs-MWP - AI Data Only", "vedantgaur/GPTOutputs-MWP - Human Data Only", "vedantgaur/GPTOutputs-MWP - Both AI and Human Data", "dmitva/human_ai_generated_text - Both AI and Human Data"] examples = [[random.choice(exampleModels), random.choice(exampleDatasets), random.choice(exampleText)] for example in exampleText] def detect_ai_generated_text(model: str, dataset: str, text: str) -> list: # Get the fine-tuned model using mapping finetuned_model = model_mapping.get((model, dataset)) # Load the specific fine-tuned model tokenizer = AutoTokenizer.from_pretrained(finetuned_model) model = AutoModelForSequenceClassification.from_pretrained(finetuned_model) # Classify the input based on the fine-tuned model classifier = pipeline('text-classification', model=model, tokenizer=tokenizer) result = classifier(text) # Get the label and score label = "AI-generated" if result[0]['label'] == 'LABEL_1' else "Human-written" score = result[0]['score'] # Create HTML for the colored bars ai_score = score if label == "AI-generated" else 1 - score human_score = 1 - ai_score ai_bar = f'
' human_bar = f'' return [f"{label} with confidence {score * 100:.2f}%", ai_bar, human_bar] interface = gr.Interface( fn=detect_ai_generated_text, inputs=[ gr.Dropdown(choices=models, label="Model"), gr.Dropdown(choices=datasets, label="Dataset"), gr.Textbox(lines=5, label="Input Text") ], outputs=[ gr.Label(label="Output"), gr.HTML(label="AI-generated"), gr.HTML(label="Human-written") ], examples=examples, title="AI Generated Text Detection" ) if __name__ == "__main__": interface.launch()