Update app.py
Browse files
app.py
CHANGED
@@ -67,6 +67,7 @@ def extract_frames_from_video(video_path, max_frames=10):
|
|
67 |
|
68 |
frames = []
|
69 |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
70 |
|
71 |
if frame_count == 0:
|
72 |
cap.release()
|
@@ -82,14 +83,16 @@ def extract_frames_from_video(video_path, max_frames=10):
|
|
82 |
break
|
83 |
|
84 |
if frame_idx % step == 0:
|
85 |
-
|
|
|
|
|
86 |
if len(frames) >= max_frames:
|
87 |
break
|
88 |
|
89 |
frame_idx += 1
|
90 |
|
91 |
cap.release()
|
92 |
-
return frames
|
93 |
|
94 |
@spaces.GPU
|
95 |
def caption_frame(frame, model_id, interval_ms, sys_prompt, usr_prompt, device):
|
@@ -168,96 +171,131 @@ def caption_frame(frame, model_id, interval_ms, sys_prompt, usr_prompt, device):
|
|
168 |
except Exception as e:
|
169 |
return f"Error: {str(e)}", '\n'.join(debug_msgs)
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
"""Process uploaded video file and return captions for multiple frames"""
|
174 |
-
if video_file is None:
|
175 |
-
return "No video file uploaded", ""
|
176 |
-
|
177 |
debug_msgs = []
|
178 |
-
|
179 |
|
180 |
try:
|
|
|
181 |
update_model(model_id, device)
|
182 |
processor = model_cache['processor']
|
183 |
model = model_cache['model']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
# Extract frames from video
|
186 |
t0 = time.time()
|
187 |
-
|
188 |
-
debug_msgs.append(f'Extracted {len(
|
|
|
189 |
|
190 |
-
if not
|
191 |
return "No frames could be extracted from the video", '\n'.join(debug_msgs)
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
#
|
197 |
-
|
198 |
-
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
199 |
-
pil_img = Image.fromarray(rgb)
|
200 |
-
temp_path = f'frame_{i}.jpg'
|
201 |
-
temp_files.append(temp_path) # Track for cleanup
|
202 |
-
pil_img.save(temp_path, format='JPEG', quality=50)
|
203 |
|
204 |
-
#
|
205 |
-
|
206 |
-
|
207 |
-
{'role': 'user', 'content': [
|
208 |
-
{'type': 'image', 'url': temp_path},
|
209 |
-
{'type': 'text', 'text': usr_prompt}
|
210 |
-
]}
|
211 |
-
]
|
212 |
-
|
213 |
-
# Tokenize and encode
|
214 |
-
inputs = processor.apply_chat_template(
|
215 |
-
messages,
|
216 |
-
add_generation_prompt=True,
|
217 |
-
tokenize=True,
|
218 |
-
return_dict=True,
|
219 |
-
return_tensors='pt'
|
220 |
)
|
221 |
|
222 |
-
#
|
223 |
-
|
224 |
-
cast_inputs = {}
|
225 |
-
for k, v in inputs.items():
|
226 |
-
if isinstance(v, torch.Tensor):
|
227 |
-
if v.dtype.is_floating_point:
|
228 |
-
cast_inputs[k] = v.to(device=model.device, dtype=param_dtype)
|
229 |
-
else:
|
230 |
-
cast_inputs[k] = v.to(device=model.device)
|
231 |
-
else:
|
232 |
-
cast_inputs[k] = v
|
233 |
-
inputs = cast_inputs
|
234 |
-
|
235 |
-
# Inference
|
236 |
-
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=128)
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
if "Assistant:" in raw:
|
241 |
-
caption = raw.split("Assistant:")[-1].strip()
|
242 |
else:
|
243 |
-
|
244 |
-
caption = lines[-1].strip() if len(lines) > 1 else raw.strip()
|
245 |
|
246 |
-
|
247 |
-
debug_msgs.
|
248 |
|
249 |
-
return '\n\n'.join(
|
250 |
|
251 |
except Exception as e:
|
252 |
return f"Error processing video: {str(e)}", '\n'.join(debug_msgs)
|
253 |
-
finally:
|
254 |
-
# Clean up all temporary files
|
255 |
-
for temp_file in temp_files:
|
256 |
-
if os.path.exists(temp_file):
|
257 |
-
try:
|
258 |
-
os.remove(temp_file)
|
259 |
-
except Exception as cleanup_error:
|
260 |
-
logging.warning(f"Failed to cleanup {temp_file}: {cleanup_error}")
|
261 |
|
262 |
def toggle_input_mode(input_mode):
|
263 |
"""Toggle between webcam and video file input"""
|
@@ -303,6 +341,7 @@ def main():
|
|
303 |
|
304 |
# Video file-specific controls
|
305 |
with gr.Row(visible=False) as video_controls:
|
|
|
306 |
max_frames = gr.Slider(1, 20, step=1, value=5, label='Max Frames to Process')
|
307 |
|
308 |
sys_p = gr.Textbox(lines=2, value='Describe the key action', label='System Prompt')
|
@@ -347,8 +386,8 @@ def main():
|
|
347 |
|
348 |
# Video file processing
|
349 |
process_btn.click(
|
350 |
-
fn=
|
351 |
-
inputs=[video_file, model_dd, sys_p, usr_p, device_dd, max_frames],
|
352 |
outputs=[caption_tb, log_tb]
|
353 |
)
|
354 |
|
|
|
67 |
|
68 |
frames = []
|
69 |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
70 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
71 |
|
72 |
if frame_count == 0:
|
73 |
cap.release()
|
|
|
83 |
break
|
84 |
|
85 |
if frame_idx % step == 0:
|
86 |
+
# Calculate timestamp for this frame
|
87 |
+
timestamp = frame_idx / fps if fps > 0 else frame_idx
|
88 |
+
frames.append((frame, timestamp))
|
89 |
if len(frames) >= max_frames:
|
90 |
break
|
91 |
|
92 |
frame_idx += 1
|
93 |
|
94 |
cap.release()
|
95 |
+
return frames, fps
|
96 |
|
97 |
@spaces.GPU
|
98 |
def caption_frame(frame, model_id, interval_ms, sys_prompt, usr_prompt, device):
|
|
|
171 |
except Exception as e:
|
172 |
return f"Error: {str(e)}", '\n'.join(debug_msgs)
|
173 |
|
174 |
+
def process_single_frame(frame, model_id, sys_prompt, usr_prompt, device, frame_id=0):
|
175 |
+
"""Process a single frame similar to webcam mode - optimized for reuse"""
|
|
|
|
|
|
|
|
|
176 |
debug_msgs = []
|
177 |
+
temp_path = None
|
178 |
|
179 |
try:
|
180 |
+
# Ensure model is loaded
|
181 |
update_model(model_id, device)
|
182 |
processor = model_cache['processor']
|
183 |
model = model_cache['model']
|
184 |
+
|
185 |
+
# Preprocess frame
|
186 |
+
t0 = time.time()
|
187 |
+
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
188 |
+
pil_img = Image.fromarray(rgb)
|
189 |
+
temp_path = f'video_frame_{frame_id}.jpg'
|
190 |
+
pil_img.save(temp_path, format='JPEG', quality=50)
|
191 |
+
debug_msgs.append(f'Preprocess: {int((time.time()-t0)*1000)} ms')
|
192 |
+
|
193 |
+
# Prepare multimodal chat messages
|
194 |
+
messages = [
|
195 |
+
{'role': 'system', 'content': [{'type': 'text', 'text': sys_prompt}]},
|
196 |
+
{'role': 'user', 'content': [
|
197 |
+
{'type': 'image', 'url': temp_path},
|
198 |
+
{'type': 'text', 'text': usr_prompt}
|
199 |
+
]}
|
200 |
+
]
|
201 |
+
|
202 |
+
# Tokenize and encode
|
203 |
+
t1 = time.time()
|
204 |
+
inputs = processor.apply_chat_template(
|
205 |
+
messages,
|
206 |
+
add_generation_prompt=True,
|
207 |
+
tokenize=True,
|
208 |
+
return_dict=True,
|
209 |
+
return_tensors='pt'
|
210 |
+
)
|
211 |
|
212 |
+
# Move inputs to correct device and dtype (matching model parameters)
|
213 |
+
param_dtype = next(model.parameters()).dtype
|
214 |
+
cast_inputs = {}
|
215 |
+
for k, v in inputs.items():
|
216 |
+
if isinstance(v, torch.Tensor):
|
217 |
+
if v.dtype.is_floating_point:
|
218 |
+
cast_inputs[k] = v.to(device=model.device, dtype=param_dtype)
|
219 |
+
else:
|
220 |
+
cast_inputs[k] = v.to(device=model.device)
|
221 |
+
else:
|
222 |
+
cast_inputs[k] = v
|
223 |
+
inputs = cast_inputs
|
224 |
+
debug_msgs.append(f'Tokenize: {int((time.time()-t1)*1000)} ms')
|
225 |
+
|
226 |
+
# Inference
|
227 |
+
t2 = time.time()
|
228 |
+
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=128)
|
229 |
+
debug_msgs.append(f'Inference: {int((time.time()-t2)*1000)} ms')
|
230 |
+
|
231 |
+
# Decode and strip history
|
232 |
+
t3 = time.time()
|
233 |
+
raw = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
234 |
+
debug_msgs.append(f'Decode: {int((time.time()-t3)*1000)} ms')
|
235 |
+
|
236 |
+
if "Assistant:" in raw:
|
237 |
+
caption = raw.split("Assistant:")[-1].strip()
|
238 |
+
else:
|
239 |
+
lines = raw.splitlines()
|
240 |
+
caption = lines[-1].strip() if len(lines) > 1 else raw.strip()
|
241 |
+
|
242 |
+
return caption, debug_msgs, None
|
243 |
+
|
244 |
+
except Exception as e:
|
245 |
+
return f"Error: {str(e)}", debug_msgs, str(e)
|
246 |
+
finally:
|
247 |
+
# Clean up temp file
|
248 |
+
if temp_path and os.path.exists(temp_path):
|
249 |
+
try:
|
250 |
+
os.remove(temp_path)
|
251 |
+
except Exception as cleanup_error:
|
252 |
+
logging.warning(f"Failed to cleanup {temp_path}: {cleanup_error}")
|
253 |
+
|
254 |
+
@spaces.GPU
|
255 |
+
def process_video_with_interval(video_file, model_id, sys_prompt, usr_prompt, device, max_frames, interval_ms):
|
256 |
+
"""Process video file with interval-based processing similar to webcam mode"""
|
257 |
+
if video_file is None:
|
258 |
+
return "No video file uploaded", ""
|
259 |
+
|
260 |
+
debug_msgs = []
|
261 |
+
all_captions = []
|
262 |
+
|
263 |
+
try:
|
264 |
# Extract frames from video
|
265 |
t0 = time.time()
|
266 |
+
frames_with_timestamps, fps = extract_frames_from_video(video_file, max_frames)
|
267 |
+
debug_msgs.append(f'Extracted {len(frames_with_timestamps)} frames in {int((time.time()-t0)*1000)} ms')
|
268 |
+
debug_msgs.append(f'Video FPS: {fps:.2f}')
|
269 |
|
270 |
+
if not frames_with_timestamps:
|
271 |
return "No frames could be extracted from the video", '\n'.join(debug_msgs)
|
272 |
|
273 |
+
# Process each frame with interval delay (similar to webcam mode)
|
274 |
+
for i, (frame, timestamp) in enumerate(frames_with_timestamps):
|
275 |
+
# Apply interval delay (similar to webcam mode)
|
276 |
+
if i > 0: # Don't delay the first frame
|
277 |
+
time.sleep(interval_ms / 1000)
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
+
# Process frame using the same logic as webcam mode
|
280 |
+
caption, frame_debug_msgs, error = process_single_frame(
|
281 |
+
frame, model_id, sys_prompt, usr_prompt, device, frame_id=i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
)
|
283 |
|
284 |
+
# Add timing information
|
285 |
+
timestamp_str = f"{timestamp:.2f}s"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
+
if error:
|
288 |
+
all_captions.append(f"Frame {i+1} (t={timestamp_str}): ERROR - {error}")
|
|
|
|
|
289 |
else:
|
290 |
+
all_captions.append(f"Frame {i+1} (t={timestamp_str}): {caption}")
|
|
|
291 |
|
292 |
+
# Add frame-specific debug info
|
293 |
+
debug_msgs.extend([f"Frame {i+1}: {msg}" for msg in frame_debug_msgs])
|
294 |
|
295 |
+
return '\n\n'.join(all_captions), '\n'.join(debug_msgs)
|
296 |
|
297 |
except Exception as e:
|
298 |
return f"Error processing video: {str(e)}", '\n'.join(debug_msgs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
def toggle_input_mode(input_mode):
|
301 |
"""Toggle between webcam and video file input"""
|
|
|
341 |
|
342 |
# Video file-specific controls
|
343 |
with gr.Row(visible=False) as video_controls:
|
344 |
+
interval_video = gr.Slider(100, 10000, step=100, value=1000, label='Processing Interval (ms)')
|
345 |
max_frames = gr.Slider(1, 20, step=1, value=5, label='Max Frames to Process')
|
346 |
|
347 |
sys_p = gr.Textbox(lines=2, value='Describe the key action', label='System Prompt')
|
|
|
386 |
|
387 |
# Video file processing
|
388 |
process_btn.click(
|
389 |
+
fn=process_video_with_interval,
|
390 |
+
inputs=[video_file, model_dd, sys_p, usr_p, device_dd, max_frames, interval_video],
|
391 |
outputs=[caption_tb, log_tb]
|
392 |
)
|
393 |
|